cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A171443 Expansion of g.f. (1+x)^8/(1-x).

Original entry on oeis.org

1, 9, 37, 93, 163, 219, 247, 255, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256
Offset: 0

Views

Author

Richard Choulet, Dec 09 2009

Keywords

Comments

a(n)=2^8=256 for n>=8. We observe that this sequence is the transform of A171442 by T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).

Examples

			a(7) = C(9,7-0)+C(9,7-2)+C(9,7-4)+C(9,7-6) = 36+126+84+9 = 255.
		

Crossrefs

Programs

  • Maple
    m:=9:for n from 0 to 40 do a(n):=sum('binomial(m,n-2*k)',k=0..floor(n/2)): od : seq(a(n),n=0..40);
  • Mathematica
    CoefficientList[Series[(1+x)^8/(1-x),{x,0,80}],x] (* Harvey P. Dale, Jul 22 2014 *)

Formula

With m=9, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).

Extensions

Definition rewritten by Bruno Berselli, Sep 23 2011

A171441 Expansion of g.f. (1+x)^6/(1-x).

Original entry on oeis.org

1, 7, 22, 42, 57, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 0

Views

Author

Richard Choulet, Dec 09 2009

Keywords

Comments

a(n)=2^6=64 for n>=6. We observe that this sequence is the transform of A171440 by T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).
Also continued fraction expansion of 1+(1233212607598+5*sqrt(41))/8688482797079. - Bruno Berselli, Sep 23 2011

Examples

			a(4) = C(7,4-0) + C(7,4-2) + C(7,4-4) = 35+21+1 = 57.
		

Crossrefs

Programs

  • Maple
    m:=7:for n from 0 to 40 do a(n):=sum('binomial(m,n-2*k)',k=0..floor(n/2)): od : seq(a(n),n=0..40);

Formula

With m=7, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).

Extensions

Definition rewritten by Bruno Berselli, Sep 23 2011

A171442 Expansion of (1+x)^7/(1-x).

Original entry on oeis.org

1, 8, 29, 64, 99, 120, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
Offset: 0

Views

Author

Richard Choulet, Dec 09 2009

Keywords

Comments

a(n)=2^7=128 for n>=7. We observe that this sequence is the transform of A171441 by T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).

Examples

			a(5) = C(8,5-0)+C(8,5-2)+C(8,5-4) = 56+56+8 = 120.
		

Crossrefs

Programs

  • Maple
    m:=8:for n from 0 to 40 do a(n):=sum('binomial(m,n-2*k)',k=0..floor(n/2)): od : seq(a(n),n=0..40);
  • Mathematica
    CoefficientList[Series[(1+x)^7/(1-x),{x,0,60}],x] (* Harvey P. Dale, Apr 30 2012 *)

Formula

With m=8, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).

Extensions

Definition rewritten by Bruno Berselli, Sep 23 2011

A329501 Array read by upward antidiagonals: row n = coordination sequence for cylinder formed by rolling up a strip of width n squares cut from the square grid by cuts parallel to grid lines.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 4, 6, 4, 2, 1, 4, 7, 6, 4, 2, 1, 4, 8, 8, 6, 4, 2, 1, 4, 8, 10, 8, 6, 4, 2, 1, 4, 8, 11, 10, 8, 6, 4, 2, 1, 4, 8, 12, 12, 10, 8, 6, 4, 2, 1, 4, 8, 12, 14, 12, 10, 8, 6, 4, 2
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2019

Keywords

Comments

For the case when the cuts are at 45 degrees to the grid lines, see A329504.
See A329508, A329512, and A329515 for coordination sequences for cylinders formed by rolling up the hexagonal grid ("carbon nanotubes").
The g.f.s for the rows can easily be found using the "trunks and branches" method (see Goodman-Strauss and Sloane). In the illustration for n=5, there are two trunks (blue) and ten branches (red).

Examples

			Array begins:
  1, 2, 2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
  1, 3, 4,  4,  4,  4,  4,  4,  4,  4,  4,  4, ...
  1, 4, 6,  6,  6,  6,  6,  6,  6,  6,  6,  6, ...
  1, 4, 7,  8,  8,  8,  8,  8,  8,  8,  8,  8, ...
  1, 4, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, ...
  1, 4, 8, 11, 12, 12, 12, 12, 12, 12, 12, 12, ...
  1, 4, 8, 12, 14, 14, 14, 14, 14, 14, 14, 14, ...
  1, 4, 8, 12, 15, 16, 16, 16, 16, 16, 16, 16, ...
  1, 4, 8, 12, 16, 18, 18, 18, 18, 18, 18, 18, ...
  1, 4, 8, 12, 16, 19, 20, 20, 20, 20, 20, 20, ...
  ...
The initial antidiagonals are:
  1;
  1,  2;
  1,  3,  2;
  1,  4,  4,  2;
  1,  4,  6,  4,  2;
  1,  4,  7,  6,  4,  2;
  1,  4,  8,  8,  6,  4,  2;
  1,  4,  8, 10,  8,  6,  4,  2;
  1,  4,  8, 11, 10,  8,  6,  4,  2;
  1,  4,  8, 12, 12, 10,  8,  6,  4,  2;
  1,  4,  8, 12, 14, 12, 10,  8,  6,  4,  2;
  ...
		

Crossrefs

Formula

Let theta = (1+x)/(1-x).
If n = 2*k, the g.f. for the coordination sequence for row n is theta*(1+2*x+2*x^2+...+2*x^(k-1)+x^k).
If n = 2*k+1, the g.f. for the coordination sequence for row n is theta*(1+2*x+2*x^2+...+2*x^k).

A329512 Array read by upward antidiagonals: row n = coordination sequence for cylinder formed by rolling up a strip of width 2*n hexagons cut from the hexagonal grid by cuts perpendicular to grid lines.

Original entry on oeis.org

1, 1, 3, 1, 3, 4, 1, 3, 6, 4, 1, 3, 6, 9, 4, 1, 3, 6, 9, 9, 4, 1, 3, 6, 9, 12, 8, 4, 1, 3, 6, 9, 12, 15, 8, 4, 1, 3, 6, 9, 12, 15, 14, 8, 4, 1, 3, 6, 9, 12, 15, 18, 12, 8, 4, 1, 3, 6, 9, 12, 15, 18, 21, 12, 8, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2019

Keywords

Comments

The width of the strip is a little harder to define here. In the illustration for n=2, the strip is four hexagons wide if measured along hexagons that touch edge-to-edge. A path joining two vertices to be identified when the cylinder is formed has length 4n edges (8 edges in the illustration for n=2).
For the case when the strip is 2*n+1 hexagons wide see A329515.
For the case when the cuts are parallel to the grid lines, see A329508.
See A329501 and A329504 for coordination sequences for cylinders formed by rolling up the square grid.

Examples

			Array begins:
1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
1, 3, 6, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...
1, 3, 6, 9, 12, 15, 14, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, ...
1, 3, 6, 9, 12, 15, 18, 21, 19, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 24, 20, 20, 20, 20, 20, 20, 20, 20, 20, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 29, 24, 24, 24, 24, 24, 24, 24, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 34, 28, 28, 28, 28, 28, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 39, 32, 32, 32, ...
1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 44, 36, 36, ...
...
The initial antidiagonals are:
1,
1, 3,
1, 3, 4,
1, 3, 6, 4,
1, 3, 6, 9, 4,
1, 3, 6, 9, 9, 4,
1, 3, 6, 9, 12, 8, 4,
1, 3, 6, 9, 12, 15, 8, 4,
1, 3, 6, 9, 12, 15, 14, 8, 4,
1, 3, 6, 9, 12, 15, 18, 12, 8, 4,
...
		

Crossrefs

Rows 1,2,3 are A113311, A329513, A329514.

Programs

  • Magma
    n := 2; \\ set n
    R := RationalFunctionField(Integers());
    FG3 := FreeGroup(3);
    Q3 := quo;
    H := AutomaticGroup(Q3);
    f3 := GrowthFunction(H);
    PSR := PowerSeriesRing(Integers():Precision := 60);
    Coefficients(PSR!f3);
    // 1, 3, 6, 9, 12, 15, 14, 12, 12, 12, 12, 12, 12, 12, 12, ... (row n)
    f3; // G(n)
    // (x^3-2*x^2-1)*(1+x)^2/(x-1)

Formula

The g.f.s for the rows could be found using the "trunks and branches" method (see Goodman-Strauss and Sloane), as was done in A329508. This step has not yet been carried out, so the following g.f. is at present only conjectural.
The g.f. G(n) for row n (n>=1) is (strongly) conjectured to be
(1/(1-x))*(1 + 2*x + 3*x^2*(1-x^(2*n-2))/(1-x) - (n-2)*x^(2*n) - (n-1)*x^(2*n+1)).
The values of G(1) through G(6) (certified by MAGMA) are:
(1+x)^2/(1-x),
(x^3-2*x^2-1)*(1+x)^2/(x-1),
(2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1),
(3*x^7-4*x^6+2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1),
(4*x^9-5*x^8+3*x^7-4*x^6+2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1),
(5*x^11-6*x^10+4*x^9-5*x^8+3*x^7-4*x^6+2*x^5-3*x^4+x^3-2*x^2-1)*(1+x)^2/(x-1).
Note that row n is equal to 4*n once the (2*n+1)-st term has been reached.
The g.f.s for the rows can also be obtained by regarding the 1-skeleton of the cylinder as the Cayley diagram for an appropriate group H, and computing the growth function for H (see the MAGMA code).

A131205 a(n) = a(n-1) + a(floor(n/2)) + a(ceiling(n/2)).

Original entry on oeis.org

1, 3, 7, 13, 23, 37, 57, 83, 119, 165, 225, 299, 393, 507, 647, 813, 1015, 1253, 1537, 1867, 2257, 2707, 3231, 3829, 4521, 5307, 6207, 7221, 8375, 9669, 11129, 12755, 14583, 16613, 18881, 21387, 24177, 27251, 30655, 34389, 38513, 43027, 47991
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 22 2007

Keywords

Comments

From Gary W. Adamson, Dec 16 2009: (Start)
Let M = an infinite lower triangular matrix with (1, 3, 4, 4, 4, ...) in every column shifted down twice, with the rest zeros:
1;
3, 0;
4, 1, 0;
4, 3, 0, 0;
4, 4, 1, 0, 0;
4, 4, 3, 0, 0, 0;
...
A131205 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
The subsequence of primes in this sequence begins with 5 in a row: 3, 7, 13, 23, 37, 83, 647, 1867, 2707, 88873, 388837, 655121, 754903, 928621, 1062443. - Jonathan Vos Post, Apr 25 2010

Crossrefs

Cf. A000123, A008619. Bisection of A033485.

Programs

  • Haskell
    a131205 n = a131205_list !! (n-1)
    a131205_list = scanl1 (+) a000123_list -- Reinhard Zumkeller, Oct 10 2013
  • Maple
    A[1]:= 1:
    for n from 2 to 100 do A[n]:= A[n-1] + A[floor(n/2)] + A[ceil(n/2)] od:
    seq(A[n],n=1..100); # Robert Israel, Sep 06 2016
  • Mathematica
    Nest[Append[#1, #1[[-1]] + #1[[Floor@ #3]] + #[[Ceiling@ #3]] ] & @@ {#1, #2, #2/2} & @@ {#, Length@ # + 1} &, {1}, 42] (* Michael De Vlieger, Jan 16 2020 *)

Formula

Partial sums of A000123. - Gary W. Adamson, Oct 26 2007
G.f.: r(x) * r(x^2) * r(x^4) * r(x^8) * ... where r(x) = (1 + 3x + 4x^2 + 4x^3 + 4x^4 + ...) is the g.f. of A113311. - Gary W. Adamson, Sep 01 2016
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k))/(1 - x^(2^k)). - Ilya Gutkovskiy, Jun 05 2017
a(n) = A033485(2n-1). - Jean-Paul Allouche, Aug 11 2021

A255176 a(n) = H_n(2,2) where H_n is the n-th hyperoperator.

Original entry on oeis.org

3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Natan Arie Consigli, Feb 25 2015

Keywords

Comments

See A054871 for definitions and key links.
Also, decimal expansion of 31/90. - Bruno Berselli, Mar 18 2015
Essentially the same as A010709, A040002, A113311, A123932, and A151798. - R. J. Mathar, Mar 20 2015
Remainder of the Euclidean division when 10^(10^n) is divided by 7 (proof by induction for n >= 1) [see reference Julien Freslon & Jérôme Poineau]; example: 10^(10^1) = 1428571428 * 7 + 4. - Bernard Schott, Aug 28 2020

Examples

			a(0) = H_0(2,2) = 2+1 = 3.
a(1) = H_1(2,2) = 2+2 = 4.
a(2) = H_2(2,2) = 2*2 = 4.
a(3) = H_3(2,2) = 2^2 = 4.
a(n) = H_n(2,2) = H_{n-1}(2,H_n(2,1)) = H_{n-1}(2,2) = 4, for n>1.
		

References

  • Julien Freslon & Jérôme Poineau, Les 100 exercices-types de mathématiques: MPSI/PCSI/PTSI, EdiScience, 2007, Exercice 11.2, page 242.

Crossrefs

Formula

G.f.: (3 + x)/(1 - x). - Bruno Berselli, Mar 18 2015
a(n) = 10^(10^n) mod 7. - Bernard Schott, Aug 28 2020

Extensions

Edited by Danny Rorabaugh, Oct 20 2015

A130713 a(0)=a(2)=1, a(1)=2, a(n)=0 for n > 2.

Original entry on oeis.org

1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Curtz and Tanya Khovanova, Jul 01 2007

Keywords

Comments

Self-convolution of A019590. Up to a sign the convolutional inverse of the natural numbers sequence. - Tanya Khovanova, Jul 14 2007
Iterated partial sums give the chain A130713 -> A113311 -> A008574 -> A001844 -> A005900 -> A006325 -> A033455 -> A259181, up to index. The k-th term of the n-th partial sums is (n^2-7n+14 + 4k(k+n-4))(k+n-4)!/(k-1)!/(n-1)!, for k > 3-n. Iterating partial sums in reverse (n-th differences with n zeros prepended) gives row (n+3) of A182533, modulo signs and trailing zeros. - Travis Scott, Feb 19 2023

Programs

Formula

G.f.: 1 + 2*x + x^2.
a(n) = binomial(2n, n^2). - Wesley Ivan Hurt, Mar 08 2014

A152072 Triangle read by rows: T(n,k) = the largest product of a partition of n into k positive integers (1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 6, 4, 2, 1, 6, 9, 8, 4, 2, 1, 7, 12, 12, 8, 4, 2, 1, 8, 16, 18, 16, 8, 4, 2, 1, 9, 20, 27, 24, 16, 8, 4, 2, 1, 10, 25, 36, 36, 32, 16, 8, 4, 2, 1, 11, 30, 48, 54, 48, 32, 16, 8, 4, 2, 1, 12, 36, 64, 81, 72, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 16 2009

Keywords

Comments

The optimal partition is P(n,k) = ([(n+i)/k] : 0 <= i < k).
The table also appears in the solution of a maximum problem in arithmetic considered by K. Mahler and J. Popken. - J. van de Lune and Juan Arias-de-Reyna, Jan 05 2012
T(n,k) is the number of ways to select k class representatives from the mod k partitioning of {1,2,...,n}. - Dennis P. Walsh, Nov 27 2012
T(n,k) is the maximum number of length-k longest common subsequences of a pair of length-n strings. - Cees H. Elzinga, Jun 08 2014

Examples

			Triangle begins:
1
2,1
3,2,1
4,4,2,1
5,6,4,2,1
6,9,8,4,2,1
7,12,12,8,4,2,1
8,16,18,16,8,4,2,1
9,20,27,24,16,8,4,2,1
10,25,36,36,32,16,8,4,2,1
...
T(7,3)=12 since there are 12 ways to selected class representatives from the mod 3 partitioning of {1,..,7} = {1,4,7} U {2,5} U {3,6}. - _Dennis P. Walsh_, Nov 27 2012
		

References

  • Cees H. Elzinga, M. Studer, Normalization of Distance and Similarity in Sequence Analysis in G. Ritschard & M. Studer (eds), Proceedings of the International Conference on Sequence Analysis and Related Methods, Lausanne, June 8-10, 2016, pp 445-468.
  • K. Mahler and J. Popken, Over een Maximumprobleem uit de Rekenkunde (in Dutch), (On a Maximum Problem in Arithmetic), Nieuw Archief voor Wiskunde (3) 1 (1953), 1-15.
  • David W. Wilson, Posting to Sequence Fans mailing List, Mar 11 2009

Crossrefs

T(n,1) = n = A000027(n).
T(n,2) = A002620(n-2).
T(n,3) = A006501(n).
T(n,4) = A008233(n).
T(n,5) = A008382(n).
T(n,6) = A008881(n).
T(n,7) = A009641(n).
T(n,8) = A009694(n).
T(n,9) = A009714(n).
T(n,n)=1, T(n,n-1)=A040000(n+1), T(n,n-2)=A113311(n+1).
Cf. A152074 (row sums).

Programs

  • Maple
    T:= (n,k)-> mul(floor((n+i)/k), i=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..12);
  • Mathematica
    T[n_, k_] := Product[ Floor[(n + i)/k], {i, 0, k - 1}]; Flatten@ Table[ T[n, k], {n, 12}, {k, n}] (* Robert G. Wilson v, Jul 08 2016 *)

Formula

T(n,k) = PROD(0 <= i < k; [(n+i)/k]).
T(n,n-d) = 2^d = A000079(d) (d <= n/2).
MAX(1 <= k <= n, T(n,k)) = A000792(n).
T(n,k) = (ceiling(n/k))^(n mod k)*(floor(n/k))^(k-n mod k). - Dennis P. Walsh, Nov 27 2012
Sum_{k = 1..n} T(n,k) = A152074(n). - David W. Wilson, Jul 07 2016

A113310 Riordan array ((1+x)/(1-x),x/(1+x)).

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 2, 1, 0, 1, 2, 1, 1, -1, 1, 2, 1, 0, 2, -2, 1, 2, 1, 1, -2, 4, -3, 1, 2, 1, 0, 3, -6, 7, -4, 1, 2, 1, 1, -3, 9, -13, 11, -5, 1, 2, 1, 0, 4, -12, 22, -24, 16, -6, 1, 2, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 2, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 2, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2005

Keywords

Comments

Row sums are A113311. Diagonal sums are A113312. Inverse is A113313. The family of Riordan arrays ((1+x)/(1-(q-1)x),x/(1+x)) allow one to calculate the weight distribution of MDS codes.

Examples

			Triangle begins
  1;
  2,1;
  2,1,1;
  2,1,0,1;
  2,1,1,-1,1;
  2,1,0,2,-2,1;
		

References

  • F.J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 2003, p. 321.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(n-j) Binomial[n, j] (2^(j-k+1) - 1), {j, k, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2017 *)

Formula

T(n, k) = Sum_{j=0..n-k} (-1)^j*C(j+k-2, j).
T(n, k) = Sum_{j=0..n-k} (-1)^(n-k-j)*C(n-j-2, n-j-k).
T(n, k) = Sum_{j=k..n} (-1)^(n-j)*C(n, j)*(2^(j-k+1)-1).
Previous Showing 11-20 of 27 results. Next