cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A195140 Multiples of 5 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 5, 3, 10, 5, 15, 7, 20, 9, 25, 11, 30, 13, 35, 15, 40, 17, 45, 19, 50, 21, 55, 23, 60, 25, 65, 27, 70, 29, 75, 31, 80, 33, 85, 35, 90, 37, 95, 39, 100, 41, 105, 43, 110, 45, 115, 47, 120, 49, 125, 51, 130, 53, 135, 55, 140, 57, 145, 59, 150, 61, 155, 63
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

This is 5*n/2 if n is even, n if n is odd.
Partial sums give the generalized enneagonal numbers A118277.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized enneagonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

A008587 and A005408 interleaved.
Column 5 of A195151.
Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, this sequence, zero together with A165998, A195159, A195161, A195312.

Programs

  • Magma
    &cat[[5*n,2*n+1]: n in [0..31]]; // Bruno Berselli, Sep 27 2011
    
  • Mathematica
    With[{nn=40},Riffle[5*Range[0,nn],Range[1,2nn+1,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,1,5,3},80] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    a(n)=(7+3*(-1)^n)*n/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(2n) = 5n, a(2n+1) = 2n+1.
G.f.: x*(1+5*x+x^2) / ((x-1)^2*(x+1)^2). - Alois P. Heinz, Sep 26 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = (7+3*(-1)^n)*n/4.
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) + a(n-1) = A047336(n). (End)
Multiplicative with a(2^e) = 5*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 3/2^s). - Amiram Eldar, Oct 25 2023

Extensions

Corrected and edited by Alois P. Heinz, Sep 25 2011

A024966 7 times triangular numbers: 7*n*(n+1)/2.

Original entry on oeis.org

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ... and the same line from 0, in the direction 1, 21, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the main diagonal in the spiral. - Omar E. Pol, Sep 09 2011
Also sequence found by reading the same line mentioned above in the square spiral whose vertices are the generalized enneagonal numbers A118277. Axis perpendicular to A195145 in the same spiral. - Omar E. Pol, Sep 18 2011
Sequence provides all integers m such that 56*m + 49 is a square. - Bruno Berselli, Oct 07 2015
Sum of the numbers from 3*n to 4*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

  • Magma
    [ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
    Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
    Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
    7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015

Formula

a(n) = (7/2)*n*(n+1).
G.f.: 7*x/(1-x)^3.
a(n) = (7*n^2 + 7*n)/2 = 7*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 7*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = A069099(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n-1), a(n+2) = A193053(n+2) + 2*A193053(n+1) + A193053(n). - Bruno Berselli, Oct 21 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 21.
a(n) = A174738(7*n+6).
a(n) = A179986(n) + n = A186029(n) + 2*n = A022265(n) + 3*n = A022264(n) + 4*n = A218471(n) + 5*n = A001106(n) + 6*n. (End)
a(n) = Sum_{i=3*n..4*n} i. - Wesley Ivan Hurt, Dec 22 2015
E.g.f.: (7/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/7)*(2*log(2) - 1). (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(7/(2*Pi))*cos(sqrt(15/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/(2*Pi))*cosh(Pi/(2*sqrt(7))). (End)

A195152 Square array read by antidiagonals with T(n,k) = n*((k+2)*n-k)/2, n=0, +- 1, +- 2,..., k>=0.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 4, 5, 3, 1, 0, 9, 7, 6, 4, 1, 0, 9, 12, 10, 7, 5, 1, 0, 16, 15, 15, 13, 8, 6, 1, 0, 16, 22, 21, 18, 16, 9, 7, 1, 0, 25, 26, 28, 27, 21, 19, 10, 8, 1, 0, 25, 35, 36, 34, 33, 24, 22, 11, 9, 1, 0, 36, 40, 45, 46, 40, 39, 27, 25, 12, 10, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also, column k lists the partial sums of the column k of A195151. The first differences in row n are always the n-th term of the triangular numbers repeated 0,0,1,1,3,3,6,6,... ([0,0] together with A008805).
Also, for k >= 1, this is a table of generalized polygonal numbers since column k lists the generalized m-gonal numbers, where m = k+4, for example: if k = 1 then m = 5, so the column 1 lists the generalized pentagonal numbers A001318 (see example).

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,...
.  4,   5,   6,   7,   8,   9,  10,  11,  12,  13,...
.  4,   7,  10,  13,  16,  19,  22,  25,  28,  31,...
.  9,  12,  15,  18,  21,  24,  27,  30,  33,  36,...
.  9,  15,  21,  27,  33,  39,  45,  51,  57,  63,...
. 16,  22,  28,  34,  40,  46,  52,  58,  64,  70,...
. 16,  26,  36,  46,  56,  66,  76,  86,  96, 106,...
. 25,  35,  45,  55,  65,  75,  85,  95, 105, 115,...
. 25,  40,  55,  70,  85, 100, 115, 130, 145, 160,...
...
		

Crossrefs

Column 0 gives A008794, except its first term.

Formula

T(n,k) = (k+2)*n*(n+1)/8+(k-2)*((2*n+1)*(-1)^n-1)/16, n >= 0 and k >= 0. - Omar E. Pol, Oct 01 2011

A179986 Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.

Original entry on oeis.org

0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2011

Keywords

Comments

This sequence is a bisection of A118277 (even part).
Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012
The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019

Crossrefs

Cf. second k-gonal numbers: A005449 (k=5), A014105 (k=6), A147875 (k=7), A045944 (k=8), this sequence (k=9), A033954 (k=10), A062728 (k=11), A135705 (k=12).

Programs

Formula

G.f.: x*(6 + x)/(1 - x)^3.
a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0.
a(-n) = A001106(n).
Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0.
a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011
a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013
a(n) = A001477(n) + 2*A000290(n) + 3*A000217(n). - J. M. Bergot, Apr 25 2014
a(n) = A055998(4*n) - A055998(3*n). - Bruno Berselli, Sep 23 2016
E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017

A195849 Column 5 of array A195825. Also column 1 of triangle A195839. Also 1 together with the row sums of triangle A195839.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 14, 16, 21, 27, 32, 34, 36, 38, 44, 54, 67, 77, 84, 88, 95, 107, 128, 152, 174, 188, 200, 215, 242, 281, 329, 370, 402, 428, 462, 513, 589, 674, 754, 816, 873, 940, 1041, 1176, 1333, 1477, 1600, 1710, 1845
Offset: 0

Views

Author

Omar E. Pol, Oct 07 2011

Keywords

Comments

Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1], [4, 4, 4, 4], [13, 13]. For more information see A210843. See also other columns of A195825. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 6 (mod 7). - Ludovic Schwob, Aug 05 2021

Crossrefs

Programs

  • Maple
    A118277 := proc(n)
            7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8) ;
    end proc:
    A195839 := proc(n, k)
            option remember;
            local ks, a, j ;
            if A118277(k) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A118277(j) <= n-1 then
                                    a := a+procname(n-1, j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A118277(k) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
            end if;
    end proc:
    A195849 := proc(n)
            A195839(n+1,1) ;
    end proc:
    seq(A195849(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    m = 61;
    Product[1/((1 - x^(7k))(1 - x^(7k - 1))(1 - x^(7k - 6))), {k, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Apr 13 2020, after Ilya Gutkovskiy *)

Formula

G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-1))*(1 - x^(7*k-6))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*sin(Pi/7)*n). - Vaclav Kotesovec, Aug 14 2017

A195145 Concentric 14-gonal numbers.

Original entry on oeis.org

0, 1, 14, 29, 56, 85, 126, 169, 224, 281, 350, 421, 504, 589, 686, 785, 896, 1009, 1134, 1261, 1400, 1541, 1694, 1849, 2016, 2185, 2366, 2549, 2744, 2941, 3150, 3361, 3584, 3809, 4046, 4285, 4536, 4789, 5054, 5321, 5600, 5881, 6174, 6469, 6776, 7085, 7406
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric tetradecagonal numbers or concentric tetrakaidecagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 14, ..., and the same line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Main axis, perpendicular to A024966 in the same spiral.
Partial sums of A113801. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195145 n = a195145_list !! n
    a195145_list = scanl (+) 0 a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(14*n^2+5*(-1)^n-5)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 1, 14, 29}, 50] (* Amiram Eldar, Jan 16 2023 *)

Formula

G.f.: -x*(1+12*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (14*n^2 + 5*(-1)^n - 5)/4;
a(n) = a(-n) = -a(n-1) + 7*n^2 - 7*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/84 + tan(sqrt(5/7)*Pi/2)*Pi/(2*sqrt(35)). - Amiram Eldar, Jan 16 2023
E.g.f.: (7*x*(x + 1)*cosh(x) + (7*x^2 + 7*x - 5)*sinh(x))/2. - Stefano Spezia, Nov 30 2024

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.

A195320 7 times hexagonal numbers: a(n) = 7*n*(2*n-1).

Original entry on oeis.org

0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0

Views

Author

Omar E. Pol, Sep 18 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277.
Also sequence found by reading the same line (mentioned above) in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 7*n = 7*A000384(n).
G.f.: -7*x*(1+3*x)/(x-1)^3. - R. J. Mathar, Sep 27 2011
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 7*exp(x)*x*(2*x + 1).
a(n) = A316466(n) - n = A024966(2*n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A195024 a(n) = n*(14*n - 1).

Original entry on oeis.org

0, 13, 54, 123, 220, 345, 498, 679, 888, 1125, 1390, 1683, 2004, 2353, 2730, 3135, 3568, 4029, 4518, 5035, 5580, 6153, 6754, 7383, 8040, 8725, 9438, 10179, 10948, 11745, 12570, 13423, 14304, 15213, 16150, 17115, 18108, 19129, 20178, 21255, 22360, 23493, 24654, 25843
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Related to the primitive Pythagorean triple [3, 4, 5].
Sequence found by reading the line from 0, in the direction 0, 13, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral.
Also sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 28 2012

Crossrefs

Programs

Formula

a(n) = 14*n^2 - n.
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13+15*x)/(1-x)^3. (End)
E.g.f.: exp(x)*x*(13 + 14*x). - Elmo R. Oliveira, Jan 12 2025

A158482 a(n) = 14*n^2 + 1.

Original entry on oeis.org

15, 57, 127, 225, 351, 505, 687, 897, 1135, 1401, 1695, 2017, 2367, 2745, 3151, 3585, 4047, 4537, 5055, 5601, 6175, 6777, 7407, 8065, 8751, 9465, 10207, 10977, 11775, 12601, 13455, 14337, 15247, 16185, 17151, 18145, 19167, 20217, 21295, 22401
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2 + 1)^2 - (49*n^2 + 7)*(2*n)^2 = 1 can be written as a(n)^2 - A158481(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 15, in the direction 15, 57, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Programs

  • Magma
    I:=[15, 57, 127]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{15,57,127},50]
  • PARI
    a(n) = 14*n^2+1;

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(15+12*x+x^2)/(1-x)^3.
From Amiram Eldar, Feb 05 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 - (Pi/sqrt(14))*coth(Pi/sqrt(14)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(14))*csch(Pi/sqrt(14)))/2.
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(14))*sinh(Pi/sqrt(7)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(14))*csch(Pi/sqrt(14)). (End)
Previous Showing 31-40 of 52 results. Next