A218733
a(n) = (30^n - 1)/29.
Original entry on oeis.org
0, 1, 31, 931, 27931, 837931, 25137931, 754137931, 22624137931, 678724137931, 20361724137931, 610851724137931, 18325551724137931, 549766551724137931, 16492996551724137931, 494789896551724137931, 14843696896551724137931, 445310906896551724137931, 13359327206896551724137931
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 31*Self(n-1) - 30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{31, -30}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(30^Range[0,20]-1)/29 (* Harvey P. Dale, Nov 22 2022 *)
-
A218733(n):=floor((30^n-1)/29)$ makelist(A218733(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A218733(n)=30^n\29
A218740
a(n) = (37^n - 1)/36.
Original entry on oeis.org
0, 1, 38, 1407, 52060, 1926221, 71270178, 2636996587, 97568873720, 3610048327641, 133571788122718, 4942156160540567, 182859777940000980, 6765811783780036261, 250335035999861341658, 9262396331994869641347, 342708664283810176729840, 12680220578500976539004081
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 38*Self(n-1)-37*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{38, -37}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218740(n):=(37^n-1)/36$
makelist(A218740(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218740(n)=37^n\36
A218744
a(n) = (41^n - 1)/40.
Original entry on oeis.org
0, 1, 42, 1723, 70644, 2896405, 118752606, 4868856847, 199623130728, 8184548359849, 335566482753810, 13758225792906211, 564087257509154652, 23127577557875340733, 948230679872888970054, 38877457874788447772215, 1593975772866326358660816, 65353006687519380705093457
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 42*Self(n-1)-41*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{42, -41}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218744(n):=(41^n-1)/40$
makelist(A218744(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218744(n)=41^n\40
A218746
a(n) = (43^n - 1)/42.
Original entry on oeis.org
0, 1, 44, 1893, 81400, 3500201, 150508644, 6471871693, 278290482800, 11966490760401, 514559102697244, 22126041415981493, 951419780887204200, 40911050578149780601, 1759175174860440565844, 75644532518998944331293, 3252714898316954606245600, 139866740627629048068560801
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 44*Self(n-1) - 43*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{44, -43}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0},Accumulate[43^Range[0,20]]] (* Harvey P. Dale, Jan 27 2015 *)
-
A218746(n):=(43^n-1)/42$
makelist(A218746(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218746(n)=43^n\42
A098704
Decimal form of the binary numbers 10, 100010, 1000100010, 10001000100010, 100010001000100010,...
Original entry on oeis.org
2, 34, 546, 8738, 139810, 2236962, 35791394, 572662306, 9162596898, 146601550370, 2345624805922, 37529996894754, 600479950316066, 9607679205057058, 153722867280912930, 2459565876494606882
Offset: 2
-
s=0;lst={};Do[s+=2^n;AppendTo[lst, s], {n, 1, 2*5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)
FromDigits[#,2]&/@Table[Join[PadRight[{},4n,{1,0,0,0}],{1,0}],{n,0,20}] (* Harvey P. Dale, Apr 06 2020 *)
-
for(n=0,20,print(2*sum(k=0,n,2^(4*k))))
for(k=0,20,print(2*(1-16^(k+1))/-15))
A108020
a(n) is the number whose binary representation is the concatenation of n strings of the four digits "1100".
Original entry on oeis.org
0, 12, 204, 3276, 52428, 838860, 13421772, 214748364, 3435973836, 54975581388, 879609302220, 14073748835532, 225179981368524, 3602879701896396, 57646075230342348, 922337203685477580, 14757395258967641292, 236118324143482260684, 3777893186295716170956
Offset: 0
a(3) = 3276 because 3276 written in base 2 is the digit string "1100" written three times: 110011001100.
-
Table[ FromDigits[ Flatten[ Table[{1, 1, 0, 0}, {i, n}]], 2], {n, 0, 16}] (* Robert G. Wilson v, Jun 01 2005 *)
Table[FromDigits[PadRight[{},4n,{1,1,0,0}],2],{n,0,20}] (* Harvey P. Dale, Aug 12 2012 *)
-
concat(0, Vec(12*x/((1-x)*(1-16*x)) + O(x^100))) \\ Colin Barker, Dec 06 2015
-
a(n)=12*(16^n - 1)/15 \\ Charles R Greathouse IV, Nov 01 2022
A141060
Fourth quadrisection of Jacobsthal numbers A001045: a(n)=16a(n-1)-5.
Original entry on oeis.org
3, 43, 683, 10923, 174763, 2796203, 44739243, 715827883, 11453246123, 183251937963, 2932031007403, 46912496118443, 750599937895083, 12009599006321323, 192153584101141163, 3074457345618258603, 49191317529892137643
Offset: 0
A218728
a(n) = (25^n - 1)/24.
Original entry on oeis.org
0, 1, 26, 651, 16276, 406901, 10172526, 254313151, 6357828776, 158945719401, 3973642985026, 99341074625651, 2483526865641276, 62088171641031901, 1552204291025797526, 38805107275644938151, 970127681891123453776, 24253192047278086344401, 606329801181952158610026
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 26*Self(n-1)-25*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{26, -25}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(25^Range[0,20]-1)/24 (* Harvey P. Dale, Aug 23 2020 *)
-
A218728(n):=(25^n-1)/24$
makelist(A218728(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
A218728(n)=25^n\24
A218743
a(n) = (40^n - 1)/39.
Original entry on oeis.org
0, 1, 41, 1641, 65641, 2625641, 105025641, 4201025641, 168041025641, 6721641025641, 268865641025641, 10754625641025641, 430185025641025641, 17207401025641025641, 688296041025641025641, 27531841641025641025641, 1101273665641025641025641, 44050946625641025641025641
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A131865,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723.
-
[n le 2 select n-1 else 41*Self(n-1) - 40*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
LinearRecurrence[{41, -40}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
A218743(n):=floor(40^n/39)$ makelist(A218743(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=40^n\39
A269025
a(n) = Sum_{k = 0..n} 60^k.
Original entry on oeis.org
1, 61, 3661, 219661, 13179661, 790779661, 47446779661, 2846806779661, 170808406779661, 10248504406779661, 614910264406779661, 36894615864406779661, 2213676951864406779661, 132820617111864406779661, 7969237026711864406779661, 478154221602711864406779661
Offset: 0
Cf. similar sequences of the form (k^n-1)/(k-1):
A000225 (k=2),
A003462 (k=3),
A002450 (k=4),
A003463 (k=5),
A003464 (k=6),
A023000 (k=7),
A023001 (k=8),
A002452 (k=9),
A002275 (k=10),
A016123 (k=11),
A016125 (k=12),
A091030 (k=13),
A135519 (k=14),
A135518 (k=15),
A131865 (k=16),
A091045 (k=17),
A218721 (k=18),
A218722 (k=19),
A064108 (k=20),
A218724-
A218734 (k=21..31),
A132469 (k=32),
A218736-
A218753 (k=33..50), this sequence (k=60),
A133853 (k=64),
A094028 (k=100),
A218723 (k=256),
A261544 (k=1000).
-
Table[Sum[60^k, {k, 0, n}], {n, 0, 15}]
Table[(60^(n + 1) - 1)/59, {n, 0, 15}]
LinearRecurrence[{61, -60}, {1, 61}, 15]
-
a(n)=60^n + 60^n\59 \\ Charles R Greathouse IV, Jul 26 2016
Comments