A151542
Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.
Original entry on oeis.org
0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
Offset: 0
The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
-
s=0;lst={};Do[AppendTo[lst,s+=n],{n,12,6!,3}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
LinearRecurrence[{3,-3,1}, {0,12,27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
-
x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
-
a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017
A140673
a(n) = 3*n*(n + 5)/2.
Original entry on oeis.org
0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
Offset: 0
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
-
Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
LinearRecurrence[{3,-3,1},{0,9,21},50] (* Harvey P. Dale, Jul 20 2023 *)
-
concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
-
a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018
A140674
a(n) = n*(3*n + 17)/2.
Original entry on oeis.org
0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
A370238
a(n) = n*(3*n + 23)/2.
Original entry on oeis.org
0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0
Cf.
A000326,
A000566,
A008594,
A005449,
A045943,
A059845,
A115067,
A140090,
A140091,
A140672,
A140673,
A140674,
A140675,
A151542,
A277976.
-
Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
-
def a(n): return n*(3*n+23)//2
A343125
Triangle T(k, n) = (n+3)*(k-n) - 4, k >= 2, 1 <= n <= k-1, read by rows.
Original entry on oeis.org
0, 4, 1, 8, 6, 2, 12, 11, 8, 3, 16, 16, 14, 10, 4, 20, 21, 20, 17, 12, 5, 24, 26, 26, 24, 20, 14, 6, 28, 31, 32, 31, 28, 23, 16, 7, 32, 36, 38, 38, 36, 32, 26, 18, 8, 36, 41, 44, 45, 44, 41, 36, 29, 20, 9, 40, 46, 50, 52, 52, 50, 46, 40, 32, 22, 10
Offset: 2
Triangle T(k, n) begins:
k \ n| 1 2 3 4 5 6 7 8 9 10 11
------+----------------------------------
2 | 0
3 | 4 1
4 | 8 6 2
5 | 12 11 8 3
6 | 16 16 14 10 4
7 | 20 21 20 17 12 5
8 | 24 26 26 24 20 14 6
9 | 28 31 32 31 28 23 16 7
10 | 32 36 38 38 36 32 26 18 8
11 | 36 41 44 45 44 41 36 29 20 9
12 | 40 46 50 52 52 50 46 40 32 22 10
.
The following are the closed formulas for k = 3, 4 for A(k, n) = Sum_{m=0..n} F(k, m)^2, with F(k, n) = A092921(k, n), the k-generalized Fibonacci numbers, and A(k, n) = A343138(k, n), the sum of squares of F(k, n). These formulas are derived from the closed formula in the formula section. Of course further simplifications are possible. For k = 2, T(2, 1) = 0 so illustrations start with k = 3.
k | Formula
--+--------------------------------------------------------
3 | Sum_{m=0..n} F(3,m)^2 = (1/4)*(2*F(3,n)*F(3,n+2) + 4*F(3,n+1)*F(3,n+2) - (k - 2)*F(3,n)^2 - T(3,1)*F(3,n+1)^2 - T(3,2)*F(3,n+2)^2 + 1).
4 | Sum_{m=0..n} F(3,m)^2 = (1/6)*(-2*F(4,n)*F(4,n+1) + 2*F(4,n)*F(4,n+3) + 4*F(4,n+1)*F(4,n+3) + 6*F(4,n+2)*F(4,n+3) - (k-2)*F(4,n)^2 - T(4,1)*F(4,n+1)^2 - T(4, 2)*F(4,n+2)^2 - T(4,3)*F(4,n+3)^2 + 2).
- Raphael Schumacher, How to Sum the Squares of the Tetranacci Numbers and the Fibonacci m-step Numbers, Fibonacci Quarterly, 57, (2019), 168-175.
- Raphael Schumacher, Explicit Formulas for Sums Involving the Squares of the First n Tribonacci Numbers, Fibonacci Quarterly, 58 (2020), 194-202.
-
T := (k, n) -> (n + 3)*(k - n) - 4:
seq(print(seq(T(k, n), n=1..k-1)), k = 2..12); # Peter Luschny, Apr 02 2021
-
Table[(n + 3) (k - n) - 4, {k, 2, 12}, {n, k - 1}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
-
T(k,n)=(n + 3)*(k - n) - 4
for(k = 2,12,for(n = 1,k - 1, print1(T(k,n),", ")))
-
flatten([[(n+3)*(k-n) -4 for n in (1..k-1)] for k in (2..15)]) # G. C. Greubel, Nov 22 2021
Comments