cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A151542 Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.

Original entry on oeis.org

0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2009

Keywords

Crossrefs

The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    s=0;lst={};Do[AppendTo[lst,s+=n],{n,12,6!,3}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
    LinearRecurrence[{3,-3,1}, {0,12,27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
    
  • PARI
    a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = a(n-1) + 3*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(4 - 3*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
From G. C. Greubel, May 26 2017: (Start)
a(n) = 3*n*(n+7)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*(8*x + x^2)*exp(x). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 121/490.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/21 - 319/4410. (End)
a(n) = A003154(n+1) - A060544(n). - Leo Tavares, Mar 26 2022

A140673 a(n) = 3*n*(n + 5)/2.

Original entry on oeis.org

0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) equals the number of vertices of the A256666(n)-th graph (see Illustration of initial terms in A256666 Links). - Ivan N. Ianakiev, Apr 20 2015

Crossrefs

Cf. A055998.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
    Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
    LinearRecurrence[{3,-3,1},{0,9,21},50] (* Harvey P. Dale, Jul 20 2023 *)
  • PARI
    concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
    
  • PARI
    a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018

Formula

a(n) = A055998(n)*3 = (3*n^2 + 15*n)/2 = n*(3*n + 15)/2.
a(n) = 3*n + a(n-1) + 6 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(3 - 2*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 18*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 137/450.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 47/450. (End)

A140674 a(n) = n*(3*n + 17)/2.

Original entry on oeis.org

0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = (3*n^2 + 17*n)/2.
a(n) = 7*n + 3*A000217(n). - Reinhard Zumkeller, May 28 2008
a(n) = 3*n + a(n-1) + 7 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: x*(10 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 20*x)*exp(x). - G. C. Greubel, Jul 17 2017

A370238 a(n) = n*(3*n + 23)/2.

Original entry on oeis.org

0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
Offset: 0

Views

Author

Torlach Rush, Feb 12 2024

Keywords

Comments

a(a(1)) = A000566(a(1)). This is also true for each of the sequences provided in the formulae below; e.g., A151542(A151542(1)) = A000566(A151542(1)).

Crossrefs

Programs

  • Mathematica
    Table[n(3n+23)/2,{n,0,48}] (* James C. McMahon, Feb 20 2024 *)
  • Python
    def a(n): return n*(3*n+23)//2

Formula

a(n) = n*(3*n + 23)/2 = A277976(n)/2.
G.f.: x*(13-10*x)/(1-x)^3.
a(n) = A151542(n) + n.
a(n) = A140675(n) + 2*n.
a(n) = A140674(n) + 3*n.
a(n) = A140673(n) + 4*n.
a(n) = A140672(n) + 5*n.
a(n) = A059845(n) + 6*n.
a(n) = A140091(n) + 7*n.
a(n) = A140090(n) + 8*n.
a(n) = A115067(n) + 9*n.
a(n) = A045943(n) + 10*n.
a(n) = A005449(n) + 11*n.
a(n) = A000326(n) + A008594(n).
Sum_{n>=1} 1/a(n) = 823467/2769844 + sqrt(3)*Pi/69 -3*log(3)/23 = 0.2328608... - R. J. Mathar, Apr 23 2024
E.g.f.: exp(x)*x*(26 + 3*x)/2. - Stefano Spezia, Apr 26 2024

A343125 Triangle T(k, n) = (n+3)*(k-n) - 4, k >= 2, 1 <= n <= k-1, read by rows.

Original entry on oeis.org

0, 4, 1, 8, 6, 2, 12, 11, 8, 3, 16, 16, 14, 10, 4, 20, 21, 20, 17, 12, 5, 24, 26, 26, 24, 20, 14, 6, 28, 31, 32, 31, 28, 23, 16, 7, 32, 36, 38, 38, 36, 32, 26, 18, 8, 36, 41, 44, 45, 44, 41, 36, 29, 20, 9, 40, 46, 50, 52, 52, 50, 46, 40, 32, 22, 10
Offset: 2

Views

Author

Russell Jay Hendel, Apr 06 2021

Keywords

Comments

T(k, n) is even if k is odd.
T(k, n) = T(k, n+1) for n = k/2 - 2 if k >= 6 is even.
T(k, n) = T(k, n+2) for n = (k-1)/2 - 2 if k >= 7 is odd.
For fixed n, T(k, n) is linear in k.
The T(k, j) contribute coefficients to a closed formula for the sum of the first n+1 squares of the k-generalized Fibonacci numbers, F(k, j) = A092921(k, j). See A343138 for sums of squares of F(k, j). See the Formula section for closed formula. Although other sequences occur in coefficients in the closed formula for sums of squares, they are linear in nature. All coefficient sequences are mentioned in the arXiv link. The closed formula generalizes results of Schumacher (see References) for the cases k=3 and k=4 with a uniform proof method (see arXiv link).

Examples

			Triangle T(k, n) begins:
   k \ n|  1  2  3  4  5  6  7  8  9  10 11
  ------+----------------------------------
   2    |  0
   3    |  4  1
   4    |  8  6  2
   5    | 12 11  8  3
   6    | 16 16 14 10  4
   7    | 20 21 20 17 12  5
   8    | 24 26 26 24 20 14  6
   9    | 28 31 32 31 28 23 16  7
  10    | 32 36 38 38 36 32 26 18  8
  11    | 36 41 44 45 44 41 36 29 20  9
  12    | 40 46 50 52 52 50 46 40 32 22 10
.
The following are the closed formulas for k = 3, 4 for A(k, n) = Sum_{m=0..n} F(k, m)^2, with F(k, n) = A092921(k, n), the k-generalized Fibonacci numbers, and A(k, n) = A343138(k, n), the sum of squares of F(k, n). These formulas are derived from the closed formula in the formula section. Of course further simplifications are possible. For k = 2, T(2, 1) = 0 so illustrations start with k = 3.
k | Formula
--+--------------------------------------------------------
3 | Sum_{m=0..n} F(3,m)^2 = (1/4)*(2*F(3,n)*F(3,n+2) + 4*F(3,n+1)*F(3,n+2) - (k - 2)*F(3,n)^2 - T(3,1)*F(3,n+1)^2 - T(3,2)*F(3,n+2)^2 + 1).
4 | Sum_{m=0..n} F(3,m)^2 = (1/6)*(-2*F(4,n)*F(4,n+1) + 2*F(4,n)*F(4,n+3) + 4*F(4,n+1)*F(4,n+3) + 6*F(4,n+2)*F(4,n+3) - (k-2)*F(4,n)^2 - T(4,1)*F(4,n+1)^2 - T(4, 2)*F(4,n+2)^2 - T(4,3)*F(4,n+3)^2 + 2).
		

References

  • Raphael Schumacher, How to Sum the Squares of the Tetranacci Numbers and the Fibonacci m-step Numbers, Fibonacci Quarterly, 57, (2019), 168-175.
  • Raphael Schumacher, Explicit Formulas for Sums Involving the Squares of the First n Tribonacci Numbers, Fibonacci Quarterly, 58 (2020), 194-202.

Crossrefs

Programs

  • Maple
    T := (k, n) -> (n + 3)*(k - n) - 4:
    seq(print(seq(T(k, n), n=1..k-1)), k = 2..12); # Peter Luschny, Apr 02 2021
  • Mathematica
    Table[(n + 3) (k - n) - 4, {k, 2, 12}, {n, k - 1}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    T(k,n)=(n + 3)*(k - n) - 4
    for(k = 2,12,for(n = 1,k - 1, print1(T(k,n),", ")))
    
  • Sage
    flatten([[(n+3)*(k-n) -4 for n in (1..k-1)] for k in (2..15)]) # G. C. Greubel, Nov 22 2021

Formula

Let F(k, n) = A092921(k, n), the k-generalized Fibonacci numbers. Let A(k, n) = A343138(k, n) = Sum_{m=0..n} F(k, m)^2, the sum of the first m+1 k-generalized Fibonacci numbers. Then, for k >= 2, a closed formula for A(k, n) is:
A(k, n) = (1/(2*k-2)) * (Sum_{j=0..k-2, m=j+1..k-1} 2*(j+1)*(m-k+1) * F(k, n+j) * F(k, n+m)) - (k-2)*F(k, n)^2 - Sum_{j=1..k}(T(k, j) * F(k, n+j)^2) + (k-2)).
From G. C. Greubel, Nov 22 2021: (Start)
T(2*n-2, n) = A028557(n-2), n >= 2.
T(4*n-6, n) = 2*A140672(n-2), n >= 2. (End)
Previous Showing 11-15 of 15 results.