cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A143497 Triangle of unsigned 2-Lah numbers.

Original entry on oeis.org

1, 4, 1, 20, 10, 1, 120, 90, 18, 1, 840, 840, 252, 28, 1, 6720, 8400, 3360, 560, 40, 1, 60480, 90720, 45360, 10080, 1080, 54, 1, 604800, 1058400, 635040, 176400, 25200, 1890, 70, 1, 6652800, 13305600, 9313920, 3104640, 554400, 55440, 3080, 88, 1
Offset: 2

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

For a signed version of this triangle see A062137. The unsigned 2-Lah number L(2; n,k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1 and 2 must belong to different lists. More generally, the unsigned r-Lah number L(r; n, k) gives the number of partitions of the set {1, 2, ..., n} into k ordered lists with the restriction that the elements 1, 2, ..., r belong to different lists. If r = 1 there is no restriction and we obtain the unsigned Lah numbers A105278. For other cases see A143498 (r=3) and A143499 (r=4). We make some remarks on the general case.
The unsigned r-Lah numbers occur as connection constants in the generalized Lah identity (x + 2*r - 1)*(x + 2*r)*...*(x + 2*r + n - r - 2) = Sum_{k=r..n} L(r; n, k)*(x - 1)*(x - 2)*...*(x - k + r) for n >= r and where any empty products are taken equal to 1 (for a bijective proof of the identity, follow the proof of [Petkovsek and Pisanski] but restrict the first r of the Argonauts to different paths).
The unsigned r-Lah numbers satisfy the same recurrence as the unsigned Lah numbers, namely, L(r; n, k) = (n + k - 1)*L(r; n - 1,k) + L(r; n - 1,k - 1), but with the boundary conditions: L(r; n, k) = 0 if n < r or if k < r; L(r; r, r) = 1. The recurrence has the explicit solution L(r; n, k) = ((n - r)!/(k - r)!)*binomial(n + r - 1, k + r - 1) for n, k >= r. It follows that the unsigned r-Lah numbers have 'vertical' generating functions for k >= r of the form Sum_{n>=k} L(r; n, k)*t^n/(n -r)! = 1/(k - r)!*t^k/(1 - t)^(k + r). This yields the e.g.f. for the array of unsigned r-restricted Lah numbers in the form: Sum_{n,k>=r} L(r; n, k)*x^k*t^n/(n-r)! = (x*t)^r * 1/(1 - t)^(2*r) * exp(x*t/(1 - t)) = (x*t)^r (1 + (2*r + x)*t + (2r*(2*r + 1) + 2*(2*r + 1)*x + x^2)*t^2/2! + ...).
The array of unsigned r-Lah numbers begins
1
2r 1
2r*(2r+1) 2*(2r+1) 1
2r*(2r+1)*(2r+2) 3*(2r+1)*(2r+2) 3*(2r+2) 1
...
and equals exp(D(r)), where D(r) is the array with the sequence (2*r, 2*(2*r + 1), 3*(2*r + 2), 4*(2*r + 3), ...) on the main subdiagonal and zeros everywhere else.
The unsigned r-Lah numbers are related to the r-Stirling numbers: the lower triangular array of unsigned r-Lah numbers may be expressed as the matrix product St1(r) * St2(r), where St1(r) and St2(r) denote the arrays of r-Stirling numbers of the first and second kind respectively. The theory of r-Stirling numbers is developed in [Broder]. See A143491 - A143496 for tables of r-Stirling numbers. An alternative factorization for the array is as St1 * P^(2r - 2) * St2, where P denotes Pascal's triangle, A007318, St1 is the triangle of unsigned Stirling numbers of the first kind, abs(A008275) and St2 denotes the triangle of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]).
The array of unsigned r-Lah numbers is an example of the fundamental matrices sketched in A133314. So redefining the offset as n=0, given matrices A and B with A(n, k) = T(n, k)*a(n - k) and B(n, k) = T(n, k)*b(n - k), then A*B = C where C(n, k) = T(n,k)*[a(.) + b(.)]^(n - k), umbrally. An e.g.f. for the row polynomials of A is exp(x*t) exp{-x*t*[a*t/(a*t - 1)]}/(1 - a*t)^4 = exp(x*t) exp[(.)!*Laguerre(., 3, -x*t)* a(.)*t)], umbrally. - Tom Copeland, Sep 19 2008

Examples

			Triangle begins:
=========================================
n\k |     2     3     4     5     6     7
----+------------------------------------
  2 |     1
  3 |     4     1
  4 |    20    10     1
  5 |   120    90    18     1
  6 |   840   840   252    28     1
  7 |  6720  8400  3360   560    40     1
 ...
T(4,3) = 10. The ten partitions of {1,2,3,4} into 3 ordered lists such that the elements 1 and 2 lie in different lists are: {1}{2}{3,4} and {1}{2}{4,3}, {1}{3}{2,4} and {1}{3}{4,2}, {1}{4}{2,3} and {1}{4}{3,2}, {2}{3}{1,4} and {2}{3}{4,1}, {2}{4}{1,3} and {2}{4}{3,1}. The remaining two partitions {3}{4}{1,2} and {3}{4}{2,1} are not allowed because the elements 1 and 2 belong to the same block.
		

Crossrefs

Cf. A001715 (column 2), A007318, A008275, A008277, A061206 (column 3), A062137, A062141 - A062144 ( column 4 to column 7), A062146 (alt. row sums), A062147 (row sums), A105278 (unsigned Lah numbers), A143491, A143494, A143498, A143499.

Programs

  • GAP
    T:=Flat(List([2..10],n->List([2..n],k->(Factorial(n-2)/Factorial(k-2))*Binomial(n+1,k+1)))); # Muniru A Asiru, Nov 27 2018
  • Maple
    T := (n, k) -> ((n-2)!/(k-2)!)*binomial(n+1, k+1):
    for n from 2 to 11 do seq(T(n, k), k = 2..n) od;
  • Mathematica
    T[n_, k_] := (n-2)!/(k-2)!*Binomial[n+1, k+1]; Table[T[n, k], {n,2,10}, {k,2,n}] // Flatten (* Amiram Eldar, Nov 27 2018 *)
  • Maxima
    create_list((n - 2)!/(k - 2)!*binomial(n + 1, k + 1), n, 2, 12, k, 2, n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
    

Formula

T(n, k) = ((n - 2)!/(k - 2)!)*C(n+1, k+1), for n, k >= 2.
Recurrence: T(n, k) = (n + k - 1)*T(n-1, k) + T(n-1, k-1) for n, k >= 2, with the boundary conditions: T(n, k) = 0 if n < 2 or k < 2; T(2, 2) = 1.
E.g.f. for column k: Sum_{n>=k} T(n, k)*t^n/(n - 2)! = 1/(k - 2)!*t^k/(1 - t)^(k+2) for k >= 2.
E.g.f: Sum_{n=2..inf} Sum_{k=2..n} T(n, k)*x^k*t^n/(n - 2)! = (x*t)^2/(1 - t)^4* exp(x*t/(1 - t)) = (x*t)^2*(1 + (4 + x)*t + (20 + 10*x + x^2)*t^2/2! + ... ).
Generalized Lah identity: (x + 3)*(x + 4)*...*(x + n) = Sum_{k = 2..n} T(n, k)*(x - 1)*(x - 2)*...*(x - k + 2).
The polynomials 1/n!*Sum_{k=2..n+2} T(n+2, k)*(-x)^(k - 2) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,3,x). See A062137.
Array = A143491 * A143494 = abs(A008275) * (A007318)^2 * A008277 (apply Theorem 10 of [Neuwirth]). Array equals exp(D), where D is the array with the quadratic sequence (4, 10, 18, 28, ...) on the main subdiagonal and zeros elsewhere.
After adding 1 to the head of the main diagonal and a zero to each of the subdiagonals, the n-th diagonal may be generated as coefficients of (1/n!) [D^(-1) tDt t^(-3)D t^3]^n exp(x*t), where D is the derivative w.r.t. t and D^(-1) t^j/j! = t^(j + 1)/(j + 1)!. E.g., n = 2 generates 20*x*t^3/3! + 90*x^2*t^4/4! + 252*x^3* t^5/5! + ... . For the general unsigned r-Lah number array, replace the threes by (2*r - 1) in the operator. The e.g.f. of the row polynomials is then exp[D^(-1) tDt t^(-(2*r-1))D t^(2*r - 1)] exp(x*t), with offset n = 0. - Tom Copeland, Sep 21 2008

A144696 Triangle of 2-Eulerian numbers.

Original entry on oeis.org

1, 1, 2, 1, 7, 4, 1, 18, 33, 8, 1, 41, 171, 131, 16, 1, 88, 718, 1208, 473, 32, 1, 183, 2682, 8422, 7197, 1611, 64, 1, 374, 9327, 49780, 78095, 38454, 5281, 128, 1, 757, 30973, 264409, 689155, 621199, 190783, 16867, 256
Offset: 2

Views

Author

Peter Bala, Sep 19 2008

Keywords

Comments

Let [n] denote the ordered set {1,2,...,n}. The symmetric group S_n consists of the injective mappings p:[n] -> [n]. Such a permutation p has an excedance at position i, 1 <= i < n, if p(i) > i. One well-known interpretation of the Eulerian numbers A(n,k) is that they count the permutations in the symmetric group S_n with k excedances. The triangle of Eulerian numbers is A008292 (but with an offset of 1 in the column numbering). We generalize this definition to restricted permutations as follows.
Let r be a nonnegative integer and let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number, denoted by A(r;n,k), is defined as the number of permutations in Permute(n,n-r) having k excedances. Thus the current array of 2-Eulerian numbers gives the number of permutations in Permute(n,n-2) with k excedances. See the example section below for some numerical examples.
Clearly A(0;n,k) = A(n,k). The case r = 1 also produces the ordinary Eulerian numbers A(n,k). There is an obvious bijection from Permute(n,n) to Permute(n,n-1) that preserves the number of excedances of a permutation. Consequently, the 1-Eulerian numbers are equal to the 0-Eulerian numbers: A(1;n,k) = A(0;n,k) = A(n,k).
For other cases of r-Eulerian numbers see A144697 (r = 3), A144698 (r = 4) and A144699 (r = 5). There is also a concept of r-Stirling numbers of the first and second kinds - see A143491 and A143494. If we multiply the entries of the current array by a factor of 2 and then reverse the rows we obtain A120434.
An alternative interpretation of the current array due to [Strosser] involves the 2-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapitre 4, Section 3]). We define a permutation p in Permute(n,n-2) to have a 2-excedance at position i (1 <=i <= n-2) if p(i) >= i + 2.
Given a permutation p in Permute(n,n-2), define ~p to be the permutation in Permute(n,n-2) that takes i to n+1 - p(n-i-1). The map ~ is a bijection of Permute(n,n-2) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 2-excedance at position n-i-1. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 2-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries count the permutations in Permute(n,n-2) with k 2-excedances.
Example: Represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). In Permute(10,8) the permutation p = (1,2,4,7,10,6,5,8) does not have an excedance in the first two positions (i = 1 and 2) or in the final three positions (i = 6, 7 and 8). The permutation ~p = (3,6,5,1,4,7,9,10) has 2-excedances only in the first three positions and the final two positions.
From Peter Bala, Dec 27 2019: (Start)
This is the array A(1,1,3) in the notation of Hwang et al. (p. 25), where the authors remark that the r-Eulerian numbers were first studied by Shanlan Li (Duoji Bilei, Ch. 4), who gave the summation formulas
Sum_{i = 2..n+1} (i-1)*C(i,2) = C(n+3,4) + 2*C(n+2,4)
Sum_{i = 2..n+1} (i-1)^2*C(i,2) = C(n+4,5) + 7*C(n+3,5) + 4*C(n+2,5)
Sum_{i = 2..n+1} (i-1)^3*C(i,2) = C(n+5,6) + 18*C(n+4,6) + 33*C(n+3,6) + 8*C(n+2,6). (End)

Examples

			The triangle begins
===========================================
n\k|..0.....1.....2.....3.....4.....5.....6
===========================================
2..|..1
3..|..1.....2
4..|..1.....7.....4
5..|..1....18....33.....8
6..|..1....41...171...131....16
7..|..1....88...718..1208...473....32
8..|..1...183..2682..8422..7197..1611....64
...
Row 4 = [1,7,4]: We represent a permutation p:[n-2] -> [n] in Permute(n,n-2) by its image vector (p(1),...,p(n-2)). Here n = 4. The permutation (1,2) has no excedances; 7 permutations have a single excedance, namely, (1,3), (1,4), (2,1), (3,1), (3,2), (4,1) and (4,2); the remaining 4 permutations, (2,3), (2,4), (3,4) and (4,3) each have two excedances.
		

References

  • J. Riordan. An introduction to combinatorial analysis. New York, J. Wiley, 1958.
  • R. Strosser. Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.
  • Li, Shanlan (1867). Duoji bilei (Series summation by analogies), 4 scrolls. In Zeguxizhai suanxue (Mathematics from the Studio Devoted to the Imitation of the Ancient Chinese Tradition) (Jinling ed.), Volume 4.
  • Li, Shanlan (2019). Catégories analogues d’accumulations discrètes (Duoji bilei), traduit et commenté par Andrea Bréard. La Bibliothèque Chinoise. Paris: Les Belles Lettres.

Crossrefs

Cf. A000079 (right diagonal), A001710 (row sums).
Cf. A000182 (related to alt. row sums).

Programs

  • Magma
    m:=2; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // G. C. Greubel, Jun 04 2022
    
  • Maple
    with(combinat):
    T:= (n,k) -> 1/2!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2), j = 0..k):
    for n from 2 to 10 do
    seq(T(n,k),k = 0..n-2)
    end do;
  • Mathematica
    T[n_, k_]:= 1/2!*Sum[(-1)^(k-j)*Binomial[n+1, k-j]*(j+1)^(n-1)*(j+2), {j, 0, k}];
    Table[T[n, k], {n,2,10}, {k,0,n-2}]//Flatten (* Jean-François Alcover, Oct 15 2019 *)
  • SageMath
    m=2 # A144696
    def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
    flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # G. C. Greubel, Jun 04 2022

Formula

T(n,k) = (1/2!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-1)*(j+2);
T(n,n-k) = (1/2!)*Sum_{j = 2..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-1)*(j-1).
Recurrence relations:
T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 2, T(2,k) = 0 for k >= 1. Special cases: T(n,n-2) = 2^(n-2); T(n,n-3) = A066810(n-1).
E.g.f. (with suitable offsets): (1/2)*[(1 - x)/(1 - x*exp(t - t*x))]^2 = 1/2 + x*t + (x + 2*x^2)*t^2/2! + (x + 7*x^2 + 4*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x+1)*R_n(x) + x*(1-x)*d/dx(R_n(x)) with R_2(x) = 1. It follows that the polynomials R_n(x) for n >= 3 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+1)-th row generating polynomial = (1/2!)*Sum_{k = 1..n} (k+1)!*Stirling2(n,k) *x^(k-1)*(1-x)^(n-k).
For n >= 2,
(1/2)*(x*d/dx)^(n-1) (1/(1-x)^2) = x/(1-x)^(n+1) * Sum_{k = 0..n-2} T(n,k)*x^k,
(1/2)*(x*d/dx)^(n-1) (x^2/(1-x)^2) = 1/(1-x)^(n+1) * Sum_{k = 2..n} T(n,n-k)*x^k,
1/(1-x)^(n+1)*Sum_{k = 0..n-2} T(n,k)*x^k = (1/2!) * Sum_{m = 0..inf} (m+1)^(n-1)*(m+2)*x^m,
1/(1-x)^(n+1)*Sum_{k = 2..n} T(n,n-k)*x^k = (1/2!) * Sum_{m = 2..inf} m^(n-1)*(m-1)*x^m.
Worpitzky-type identities:
Sum_{k = 0..n-2} T(n,k)*binomial(x+k,n) = (1/2!)*x^(n-1)*(x - 1);
Sum_{k = 2..n} T(n,n-k)*binomial(x+k,n) = (1/2!)*(x + 1)^(n-1)*(x + 2).
Relation with Stirling numbers (Frobenius-type identities):
T(n+1,k-1) = (1/2!) * Sum_{j = 0..k} (-1)^(k-j)*(j+1)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+1,k-1) = (1/2!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+1)!* binomial(n-j,k)*S(2;n+2,j+2) for n,k >= 1 and
T(n+2,k) = (1/2!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+2)!* binomial(n-j,k)*S(2;n+2,j+2) for n,k >= 0, where S(2;n,k) denotes the 2-Stirling numbers A143494(n,k).
The row polynomials of this array are related to the Eulerian polynomials. For example, 1/2*x*d/dx [x*(x + 4*x^2 + x^3)/(1-x)^4] = x^2*(1 + 7*x + 4*x^2)/(1-x)^5 and 1/2*x*d/dx [x*(x + 11*x^2 + 11*x^3 + x^4)/(1-x)^5] = x^2*(1 + 18*x + 33*x^2 + 8*x^3)/(1-x)^6.
Row sums A001710. Alternating row sums [1, -1, -2, 8, 16, -136, -272, 3968, 7936, ... ] are alternately (signed) tangent numbers and half tangent numbers - see A000182.
Sum_{k = 0..n-2} 2^k*T(n,k) = A069321(n-1). Sum_{k = 0..n-2} 2^(n-k)*T(n,k) = 4*A083410(n-1).
For n >=2, the shifted row polynomial t*R(n,t) = (1/2)*D^(n-1)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-2). - Peter Bala, Apr 22 2012

A144699 Triangle of 5-Eulerian numbers.

Original entry on oeis.org

1, 1, 5, 1, 16, 25, 1, 39, 171, 125, 1, 86, 786, 1526, 625, 1, 181, 3046, 11606, 12281, 3125, 1, 372, 10767, 70792, 142647, 92436, 15625, 1, 755, 36021, 380071, 1279571, 1553145, 663991, 78125, 1, 1522, 116368, 1880494, 9818494, 19555438, 15519952, 4608946, 390625
Offset: 5

Views

Author

Peter Bala, Sep 19 2008

Keywords

Comments

This is the case r = 5 of the r-Eulerian numbers, denoted by A(r;n,k), defined as follows. Let [n] denote the ordered set {1,2,...,n} and let r be a nonnegative integer. Let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that the permutation p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number A(r;n,k) is defined as the number of permutations in Permute(n,n-r) with k excedances. Thus the 5-Eulerian numbers count the permutations in Permute(n,n-5) with k excedances. For other cases see A008292 (r = 0 and r = 1), A144696 (r = 2), A144697 (r = 3) and A144698 (r = 4).
An alternative interpretation of the current array due to [Strosser] involves the 5-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapitre 4, Section 3]). We define a permutation p in Permute(n,n-5) to have a 5-excedance at position i (1 <=i <= n-5) if p(i) >= i + 5.
Given a permutation p in Permute(n,n-5), define ~p to be the permutation in Permute(n,n-5) that takes i to n+1 - p(n-i-4). The map ~ is a bijection of Permute(n,n-5) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 5-excedance at position n-i-4. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 5-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries count the permutations in Permute(n,n-5) with k 5-excedances.
Example: Represent a permutation p:[n-5] -> [n] in Permute(n,n-5) by its image vector (p(1),...,p(n-5)). In Permute(12,7) the permutation p = (1,2,4,12,3,6,5) does not have an excedance in the first two positions (i = 1 and 2) or in the final three positions (i = 5, 6 and 7). The permutation ~p = (8,7,10,1,9,11,12) has 5-excedances only in the first three positions and the final two positions.

Examples

			Triangle begins
=======================================================
n\k|..0.......1......2......3.........4.......5.......6
=======================================================
5..|..1
6..|..1.......5
7..|..1......16......25
8..|..1......39.....171.....125
9..|..1......86.....786....1526.....625
10.|..1.....181....3046...11606...12281....3125
11.|..1.....372...10767...70792..142647...92436...15625
...
T(7,1) = 16: We represent a permutation p:[n-5] -> [n] in Permute(n,n-5) by its image vector (p(1),...,p(n-5)). The 16 permutations in Permute(7,2) having 1 excedance are (1,3), (1,4), (1,5), (1,6), (1,7), (3,2), (4,2), (5,2), (6,2), (7,2), (2,1), (3,1), (4,1), (5,1), (6,1) and (7,1).
		

References

  • R. Strosser, Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.

Crossrefs

Programs

  • Magma
    m:=5; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // G. C. Greubel, Jun 08 2022
    
  • Maple
    with(combinat):
    T:= (n,k) -> 1/5!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-4)*(j+2)*(j+3)*(j+4)*(j+5),j = 0..k):
    for n from 5 to 13 do
    seq(T(n,k),k = 0..n-5)
    end do;
  • Mathematica
    T[n_, k_] /; 0 < k <= n-5 := T[n, k] = (k+1) T[n-1, k] + (n-k) T[n-1, k-1];
    T[, 0] = 1; T[, _] = 0;
    Table[T[n, k], {n, 5, 13}, {k, 0, n-5}] // Flatten (* Jean-François Alcover, Nov 11 2019 *)
  • SageMath
    m=5 # A144699
    def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
    flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # G. C. Greubel, Jun 08 2022

Formula

T(n,k) = (1/5!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-4)*(j+2)*(j+3)*(j+4)*(j+5).
T(n,n-k) = (1/5!)*Sum_{j = 5..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-4)*(j-1)*(j-2)*(j-3)*(j-4).
Recurrence relation:
T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 5, T(5,k) = 0 for k >= 1.
E.g.f. (with suitable offsets): (1/5)*((1 - x)/(1 - x*exp(t - t*x)))^5 = 1/5 + x*t + (x + 5*x^2)*t^2/2! + (x + 16*x^2 + 25*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x+1)*R_n(x) + x*(1-x)*d/dx(R_n(x)) with R_5(x) = 1. It follows that the polynomials R_n(x) for n >= 6 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+4)-th row generating polynomial = (1/5!)*Sum_{k = 1..n} (k+4)!*Stirling2(n,k)*x^(k-1)*(1-x)^(n-k).
For n >= 5,
(1/5)*(x*d/dx)^(n-4) (1/(1-x)^5) = (x/(1-x)^(n+1)) * Sum_{k = 0..n-5} T(n,k)*x^k,
(1/5)*(x*d/dx)^(n-4) (x^5/(1-x)^5) = (1/(1-x)^(n+1)) * Sum_{k = 5..n} T(n,n-k)*x^k,
(1/(1-x)^(n+1)) * Sum_{k = 0..n-5} T(n,k)*x^k = (1/5!) * Sum_{m = 0..infinity} (m+1)^(n-4)*(m+2)*(m+3)*(m+4)*(m+5)*x^m,
(1/(1-x)^(n+1)) * Sum_{k = 5..n} T(n,n-k)*x^k = (1/5!) * Sum_{m = 5..infinity} m^(n-4)*(m-1)*(m-2)*(m-3)*(m-4)*x^m.
Worpitzky-type identities:
Sum_{k = 0..n-5} T(n,k)*binomial(x+k,n) = (1/5!)*x^(n-4)*(x-1)*(x-2)*(x-3)*(x-4).
Sum_{k = 5..n} T(n,n-k)* binomial(x+k,n) = (1/5!)*(x+1)^(n-4)*(x+2)*(x+3)*(x+4)*(x+5).
Relation with Stirling numbers (Frobenius-type identities):
T(n+4,k-1) = (1/5!) * Sum_{j = 0..k} (-1)^(k-j)* (j+4)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+4,k-1) = (1/5!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+4)!* binomial(n-j,k)*S(5;n+5,j+5) for n,k >= 0 and
T(n+5,k) = (1/5!) * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+5)!* binomial(n-j,k)*S(5;n+5,j+5) for n,k >= 0, where S(5;n,k) denotes the 5-Stirling numbers of the second kind, which are given by the formula S(5;n+5,j+5) = 1/j!*Sum_{i = 0..j} (-1)^(j-i)*binomial(j,i)*(i+5)^n for n,j >= 0.

A362924 Triangle read by rows: T(n,m), n >= 1, 1 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 13, 8, 1, 52, 47, 35, 16, 1, 203, 188, 153, 97, 32, 1, 877, 825, 706, 515, 275, 64, 1, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1, 678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth

Keywords

Comments

Also, the maximum number of solutions to an exact cover problem with n items, of which m are secondary.

Examples

			Triangle begins:
  [1],
  [2, 1],
  [5, 4, 1],
  [15, 13, 8, 1],
  [52, 47, 35, 16, 1],
  [203, 188, 153, 97, 32, 1],
  [877, 825, 706, 515, 275, 64, 1],
  [4140, 3937, 3479, 2744, 1785, 793, 128, 1],
  [21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1],
  [115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1],
  [678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1],
...
For example, if n=4, m=3, then T(4,3) = 8, because out of the A000110(4) = 15 set partitions of {1,2,3,4}, those that have 2 or more blocks contained in {1,2,3} are
  {12,3,4},
  {13,2,4},
  {14,2,3},
  {23,1,4},
  {24,1,3},
  {34,1,2},
  {1,2,3,4},
  while
  {1234},
  {123,4},
  {124,3}
  {134,2}
  {234,1},
  {12,34}
  {13. 24}.
  {14, 23}
  do not.
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4B, exercise 7.2.2.1--185, answer on page 468.

Crossrefs

See A113547 and A362925 for other versions of this triangle.
Row sums give A005493.

Programs

  • Maple
    with(combinat);
    T:=proc(n,m) local k;
    add(stirling2(n-m,k)*(k+1)^m, k=0..n-m);
    end;
  • Mathematica
    A362924[n_,m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}];
    Table[A362924[n,m],{n,15},{m,n}] (* Paolo Xausa, Dec 02 2023 *)

Formula

T(n, 1) = Bell number (all set partitions) A000110(n);
T(n, n) = 1 when m=n (the only possibility is a single block);
T(n, n-1) = 2^{n-1} when m=n-1 (a single block or two blocks);
T(n, 2) = A078468(2).
In general, T(n, m) = Sum_{k=0..n-m} Stirling_2(n-m,k)*(k+1)^m.

A232473 3-Fubini numbers.

Original entry on oeis.org

6, 42, 342, 3210, 34326, 413322, 5544342, 82077450, 1330064406, 23428165002, 445828910742, 9116951060490, 199412878763286, 4646087794988682, 114884369365147542, 3005053671533400330, 82905724863616146966, 2406054103612912660362, 73277364784409578094742, 2336825320400166931304970
Offset: 3

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Crossrefs

Programs

  • Magma
    r:=3; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(3);
  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 3], {n, 3, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

From Peter Bala, Dec 16 2020: (Start)
a(n+3) = Sum_{k = 0..n} (k+3)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+3)^n ).
a(n+3) = Sum_{k = 0..n} 3^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+3)! ).
E.g.f. with offset 0: 6*exp(3*z)/(2 - exp(z))^4 = 6 + 42*z + 342*z^2/2! + 3210*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020

A232474 4-Fubini numbers.

Original entry on oeis.org

24, 216, 2184, 24696, 310344, 4304376, 65444424, 1083832056, 19437971784, 375544415736, 7779464328264, 172062025581816, 4047849158698824, 100946105980181496, 2660400563437957704, 73890563849015945976, 2157336929022064219464, 66059202473570840113656, 2116993226046938197020744
Offset: 4

Views

Author

N. J. A. Sloane, Nov 27 2013

Keywords

Crossrefs

Programs

  • Magma
    r:=4; r_Fubini:=func;
    [r_Fubini(n, r): n in [r..22]]; // Bruno Berselli, Mar 30 2016
  • Maple
    # r-Stirling numbers of second kind (e.g. A008277, A143494, A143495):
    T := (n,k,r) -> (1/(k-r)!)*add ((-1)^(k+i+r)*binomial(k-r,i)*(i+r)^(n-r),i = 0..k-r):
    # r-Bell numbers (e.g. A000110, A005493, A005494):
    B := (n,r) -> add(T(n,k,r),k=r..n);
    SB := r -> [seq(B(n,r),n=r..30)];
    SB(2);
    # r-Fubini numbers (e.g. A000670, A232472, A232473, A232474):
    F := (n,r) -> add((k)!*T(n,k,r),k=r..n);
    SF := r -> [seq(F(n,r),n=r..30)];
    SF(4);
  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, 4], {n, 4, 22}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

From Peter Bala, Dec 16 2020: (Start)
a(n+4) = Sum_{k = 0..n} (k+4)!/k!*( Sum{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i+4)^n ).
a(n+4) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*( Sum_{i = 0..k} Stirling2(k,i)*(i+4)! ).
E.g.f. with offset 0: 24*exp(4*z)/(2 - exp(z))^5 = 24 + 216*z + 2184*z^2/2! + 24696*z^3/3! + .... (End)
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Dec 17 2020

A347204 a(n) = a(f(n)/2) + a(floor((n+f(n))/2)) for n > 0 with a(0) = 1 where f(n) = A129760(n).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 15, 5, 9, 13, 20, 17, 27, 37, 52, 6, 11, 16, 25, 21, 34, 47, 67, 26, 43, 60, 87, 77, 114, 151, 203, 7, 13, 19, 30, 25, 41, 57, 82, 31, 52, 73, 107, 94, 141, 188, 255, 37, 63, 89, 132, 115, 175, 235, 322, 141, 218, 295, 409, 372, 523, 674
Offset: 0

Views

Author

Mikhail Kurkov, Aug 23 2021 [verification needed]

Keywords

Comments

Modulo 2 binomial transform of A243499(n).

Crossrefs

Programs

  • MATLAB
    function a = A347204(max_n)
        a(1) = 1;
        a(2) = 2;
        for nloop = 3:max_n
            n = nloop-1;
            s = 0;
            for k = 0:floor(log2(n))-1
                s = s + a(1+A053645(n)-2^k*(mod(floor(n/(2^k)),2)));
            end
            a(nloop) = 2*a(A053645(n)+1) + s;
        end
    end
    function a_n = A053645(n)
        a_n = n - 2^floor(log2(n));
    end % Thomas Scheuerle, Oct 25 2021
  • Mathematica
    f[n_] := BitAnd[n, n - 1]; a[0] = 1; a[n_] := a[n] = a[f[n]/2] + a[Floor[(n + f[n])/2]]; Array[a, 100, 0] (* Amiram Eldar, Nov 19 2021 *)
  • PARI
    f(n) = bitand(n, n-1); \\ A129760
    a(n) = if (n<=1, n+1, if (n%2, a(n\2)+a(n-1), a(f(n/2)) + a(n/2+f(n/2)))); \\ Michel Marcus, Oct 25 2021
    
  • PARI
    \\ Also see links.
    
  • PARI
    A129760(n) = bitand(n, n-1);
    memoA347204 = Map();
    A347204(n) = if (n<=1, n+1, my(v); if(mapisdefined(memoA347204,n,&v), v, v = if(n%2, A347204(n\2)+A347204(n-1), A347204(A129760(n/2)) + A347204(n/2+A129760(n/2))); mapput(memoA347204,n,v); (v))); \\ (Memoized version of Michel Marcus's program given above) - Antti Karttunen, Nov 20 2021
    

Formula

a(n) = a(n - 2^f(n)) + (1 + f(n))*a((n - 2^f(n))/2) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(2n+1) = a(n) + a(2n) for n >= 0.
a(2n) = a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n).
a(n) = 2*a(f(n)) + Sum_{k=0..floor(log_2(n))-1} a(f(n) - 2^k*T(n,k)) for n > 1 with a(0) = 1, a(1) = 2, and where f(n) = A053645(n), T(n,k) = floor(n/2^k) mod 2.
Sum_{k=0..2^n - 1} a(k) = A035009(n+1) for n >= 0.
a((4^n - 1)/3) = A002720(n) for n >= 0.
a(2^n - 1) = A000110(n+1),
a(2*(2^n - 1)) = A005493(n),
a(2^2*(2^n - 1)) = A005494(n),
a(2^3*(2^n - 1)) = A045379(n),
a(2^4*(2^n - 1)) = A196834(n),
a(2^m*(2^n-1)) = T(n,m+1) is the n-th (m+1)-Bell number for n >= 0, m >= 0 where T(n,m) = m*T(n-1,m) + Sum_{k=0..n-1} binomial(n-1,k)*T(k,m) with T(0,m) = 1.
a(n) = Sum_{j=0..2^A000120(n)-1} A243499(A295989(n,j)) for n >= 0. Also A243499(n) = Sum_{j=0..2^f(n)-1} (-1)^(f(n)-f(j)) a(A295989(n,j)) for n >= 0 where f(n) = A000120(n). In other words, a(n) = Sum_{j=0..n} (binomial(n,j) mod 2)*A243499(j) and A243499(n) = Sum_{j=0..n} (-1)^(f(n)-f(j))*(binomial(n,j) mod 2)*a(j) for n >= 0 where f(n) = A000120(n).
Generalization:
b(n, x) = (1/x)*b((n - 2^f(n))/2, x) + (-1)^n*b(floor((2n - 2^f(n))/2), x) for n > 0 with b(0, x) = 1 where f(n) = A007814(n).
Sum_{k=0..2^n - 1} b(k, x) = (1/x)^n for n >= 0.
b((4^n - 1)/3, x) = (1/x)^n*n!*L_{n}(x) for n >= 0 where L_{n}(x) is the n-th Laguerre polynomial.
b((8^n - 1)/7, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A265649(n, k) for n >= 0.
b(2^n - 1, x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A008277(n+1, k+1),
b(2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143494(n+2, k+2),
b(2^2*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*A143495(n+3, k+3),
b(2^m*(2^n - 1), x) = (1/x)^n*Sum_{k=0..n} (-x)^k*T(n+m+1, k+m+1, m+1) for n >= 0, m >= 0 where T(n,k,m) is m-Stirling numbers of the second kind.

A199400 Triangle T(n,k), read by rows, given by (2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...) DELTA (2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 4, 10, 6, 8, 38, 54, 24, 16, 130, 330, 336, 120, 32, 422, 1710, 3000, 2400, 720, 64, 1330, 8106, 21840, 29400, 19440, 5040, 128, 4118, 36414, 141624, 285600, 312480, 176400, 40320, 256, 12610, 158010, 853776, 2421720, 3900960, 3598560, 1774080, 362880
Offset: 0

Views

Author

Philippe Deléham, Nov 05 2011

Keywords

Comments

Variant of A162508.

Examples

			Triangle begins :
1
2, 2
4, 10, 6
8, 38, 54, 24
16, 130, 330, 336, 120
32, 422, 1710, 3000, 2400, 720
		

Crossrefs

Formula

T(n,k)=(k+1)!*A143494(n+2,k+2)
T(n,k)=(k+1)*T(n-1,k-1)+(k+2)*T(n-1,k).
Sum_{k, 0<=k<=n} T(n,k)=A162509(n+1).
T(n,n)=(n+1)!=A000142(n+1)
T(n,0)=2^n=A000079(n).

A269952 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S2(j,k), S2 the Stirling set numbers A048993, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 8, 19, 9, 1, 0, 16, 65, 55, 14, 1, 0, 32, 211, 285, 125, 20, 1, 0, 64, 665, 1351, 910, 245, 27, 1, 0, 128, 2059, 6069, 5901, 2380, 434, 35, 1, 0, 256, 6305, 26335, 35574, 20181, 5418, 714, 44, 1
Offset: 0

Views

Author

Peter Luschny, Apr 10 2016

Keywords

Examples

			1,
0, 1,
0, 2, 1,
0, 4, 5, 1,
0, 8, 19, 9, 1,
0, 16, 65, 55, 14, 1,
0, 32, 211, 285, 125, 20, 1,
0, 64, 665, 1351, 910, 245, 27, 1.
		

Crossrefs

Variant: A143494 (the main entry for this triangle).
A005493 (row sums), A074051 (alt. row sums), A000079 (col. 1), A001047 (col. 2),
A016269 (col. 3), A025211 (col. 4), A000096 (diag. n,n-1), A215862 (diag. n,n-2),
A049444, A136124, A143491 (matrix inverse).

Programs

  • Maple
    A269952 := (n,k) -> Stirling2(n+1, k+1) - Stirling2(n, k+1):
    seq(seq(A269952(n,k), k=0..n), n=0..9);
  • Mathematica
    Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] StirlingS2[j,k], {j,0,n}], {n,0,9}, {k,0,n}]]

Formula

T(n, k) = S2(n+1, k+1) - S2(n, k+1).

A219374 Triangle of F(n,r) of r-geometric numbers, 1 <= r <= n.

Original entry on oeis.org

1, 3, 2, 13, 10, 6, 75, 62, 42, 24, 541, 466, 342, 216, 120, 4683, 4142, 3210, 2184, 1320, 720, 47293, 42610, 34326, 24696, 15960, 9360, 5040, 545835, 498542, 413322, 310344, 211560, 131760, 75600, 40320, 7087261, 6541426, 5544342, 4304376, 3063000, 2005200, 1214640, 685440, 362880, 102247563, 95160302
Offset: 1

Views

Author

R. J. Mathar, Nov 19 2012

Keywords

Examples

			[1] 1;
[2] 3, 2;
[3] 13, 10, 6;
[4] 75, 62, 42, 24;
[5] 541, 466, 342, 216, 120;
[6] 4683, 4142, 3210, 2184, 1320, 720;
		

Crossrefs

Cf. A008277 {n over k}_1, A143494 {n over k}_2, A143495 {n over k}_3, A000670 (first column).

Programs

  • Maple
    Stirr := proc(n,k,r)
        option remember;
        if n < r then
            0;
        elif n = r then
            if k = r then
                1 ;
            else
                0 ;
            end if;
        else
            procname(n-1,k-1,r) + k*procname(n-1,k,r) ;
        end if;
    end proc:
    A := proc(n,r)
        add( k!*Stirr(n,k,r),k=0..n) ;
    end proc:
    seq(seq( A(n,r),r=1..n),n=1..12) ;
  • Mathematica
    Stirr[n_, k_, r_] := Stirr[n, k, r] = Which[n < r, 0, n == r, If[k == r, 1, 0], True, Stirr[n-1, k-1, r] + k*Stirr[n-1, k, r]]; a[n_, r_] := Sum[ k!*Stirr[n, k, r], {k, 0, n}]; Table[Table[a[n, r], {r, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Maple *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Table[Fubini[n, r], {n, 1, 10}, {r, 1, n}] // Flatten (* Jean-François Alcover, Mar 30 2016 *)
  • Sage
    @CachedFunction
    def stirling_number2r(n, k, r) :
        if n < r: return 0
        if n == r: return 1 if k == r else 0
        return stirling_number2r(n-1,k-1,r)+ k*stirling_number2r(n-1,k,r)
    def A219374(n, r):
        return add(factorial(k)*stirling_number2r(n, k, r) for k in (0..n))
    for n in (1..6):
        print([A219374(n, r) for r in (1..n)]) # Peter Luschny, Nov 19 2012

Formula

F(n,r) = Sum_{k=0..n} {n over k}_r *k!.
Previous Showing 21-30 of 32 results. Next