cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A325879 Number of maximal subsets of {1..n} such that every ordered pair of distinct elements has a different difference.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 14, 20, 24, 36, 64, 110, 176, 238, 294, 370, 504, 736, 1086, 1592, 2240, 2982, 3788, 4700, 5814, 7322, 9396, 12336, 16552, 22192, 29310, 38046, 48368, 60078, 73722, 89416, 108208, 131310, 160624, 198002, 247408, 310410, 390924, 490818, 613344, 758518
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

Also the number of maximal subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum.

Examples

			The a(0) = 1 through a(7) = 20 subsets:
  {}  {1}  {1,2}  {1,2}  {2,3}    {1,2,4}  {1,2,4}  {1,2,4}
                  {1,3}  {1,2,4}  {1,2,5}  {1,2,5}  {1,2,6}
                  {2,3}  {1,3,4}  {1,3,4}  {1,2,6}  {1,3,4}
                                  {1,4,5}  {1,3,4}  {1,4,5}
                                  {2,3,5}  {1,3,6}  {1,4,6}
                                  {2,4,5}  {1,4,5}  {1,5,6}
                                           {1,4,6}  {2,3,5}
                                           {1,5,6}  {2,3,6}
                                           {2,3,5}  {2,3,7}
                                           {2,3,6}  {2,4,5}
                                           {2,4,5}  {2,4,7}
                                           {2,5,6}  {2,5,6}
                                           {3,4,6}  {2,6,7}
                                           {3,5,6}  {3,4,6}
                                                    {3,4,7}
                                                    {3,5,6}
                                                    {4,5,7}
                                                    {4,6,7}
                                                    {1,2,5,7}
                                                    {1,3,6,7}
		

Crossrefs

The subset case is A143823.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
  • PARI
    a(n)={
      my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,bitor(b,1< n, ismaxl(b,w),
             my(s=self()(k+1, b,w));
             b+=1<Andrew Howroyd, Mar 27 2025

Extensions

a(21)-a(45) from Fausto A. C. Cariboni, Feb 08 2022

A325859 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different product.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 4, 11, 11, 28, 28, 60, 60, 140, 241, 299, 299, 572, 572, 971
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 11 subsets:
  {1}  {12}  {123}  {1234}  {12345}  {2356}   {23567}   {123457}  {235678}
                                     {12345}  {123457}  {123578}  {1234579}
                                     {12456}  {124567}  {124567}  {1235789}
                                     {13456}  {134567}  {125678}  {1245679}
                                                        {134567}  {1256789}
                                                        {134578}  {1345679}
                                                        {135678}  {1345789}
                                                        {145678}  {1356789}
                                                        {234578}  {1456789}
                                                        {235678}  {2345789}
                                                        {245678}  {2456789}
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Times@@@Subsets[#,{2}]&]]],{n,0,15}]

A325861 Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 6, 6, 9, 13, 32, 32, 57, 57, 140, 229, 373, 373, 549, 549, 825
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 13 subsets:
  {1}  {12}  {123}  {123}  {1235}  {1235}   {12357}   {23457}   {24567}
                    {134}  {1345}  {1256}   {12567}   {24567}   {123578}
                    {234}  {2345}  {2345}   {23457}   {123578}  {134567}
                                   {2356}   {23567}   {125678}  {134578}
                                   {2456}   {24567}   {134567}  {135678}
                                   {13456}  {134567}  {134578}  {145678}
                                                      {135678}  {145789}
                                                      {145678}  {234579}
                                                      {235678}  {235678}
                                                                {235789}
                                                                {345789}
                                                                {356789}
                                                                {1256789}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,0,10}]

A325769 Number of integer partitions of n whose distinct consecutive subsequences have different sums.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 28, 41, 42, 62, 61, 88, 87, 123, 121, 168, 164, 234, 225, 306, 306, 411, 401, 527, 533, 700, 689, 894, 885, 1163, 1150, 1452, 1469, 1866, 1835, 2333, 2346, 2913, 2913, 3638, 3619, 4511, 4537, 5497, 5576, 6859, 6827, 8263
Offset: 0

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

For example (3,3,1,1) is counted under a(8) because it has distinct consecutive subsequences (), (1), (1,1), (3), (3,1), (3,1,1), (3,3), (3,3,1), (3,3,1,1), all of which have different sums.
The Heinz numbers of these partitions are given by A325778.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (311)    (222)     (322)      (71)
                            (11111)  (411)     (331)      (332)
                                     (111111)  (421)      (521)
                                               (511)      (611)
                                               (2221)     (2222)
                                               (4111)     (3311)
                                               (1111111)  (5111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,30}]

Extensions

a(41)-a(53) from Fausto A. C. Cariboni, Feb 24 2021

A325680 Number of compositions of n such that every distinct circular subsequence has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 5, 6, 8, 14, 16, 29, 24, 42, 46, 78, 66, 146, 133, 242, 208, 386, 352, 620, 494, 948, 842, 1447
Offset: 0

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A circular subsequence is a sequence of consecutive terms where the first and last parts are also considered consecutive.

Examples

			The a(1) = 1 through a(8) = 16 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (1111)  (41)     (42)      (43)       (44)
                            (11111)  (51)      (52)       (53)
                                     (222)     (61)       (62)
                                     (111111)  (124)      (71)
                                               (142)      (125)
                                               (214)      (152)
                                               (241)      (215)
                                               (412)      (251)
                                               (421)      (512)
                                               (1111111)  (521)
                                                          (2222)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Total/@subalt[#]&]],{n,0,15}]

Extensions

a(18)-a(25) from Robert Price, Jun 19 2021

A325853 Number of integer partitions of n such that every pair of distinct parts has a different quotient.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 21, 28, 39, 51, 69, 88, 116, 148, 193, 242, 309, 385, 484, 596, 746, 915, 1128, 1371, 1679, 2030, 2460, 2964, 3570, 4268, 5115, 6088, 7251, 8584, 10175, 12002, 14159, 16619, 19526, 22846, 26713, 31153, 36300, 42169, 48990, 56728
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different product.

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (3211)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The one partition of 7 for which not every pair of distinct parts has a different quotient is (4,2,1).
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,20}]

A325876 Number of strict Golomb partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 18, 24, 29, 27, 38, 43, 47, 53, 67, 67, 84, 87, 102, 113, 137, 131, 167, 179, 204, 213, 261, 263, 315, 327, 377, 413, 476, 472, 564, 602, 677, 707, 820, 845, 969, 1027, 1131, 1213, 1364, 1413, 1596, 1700, 1858
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

We define a Golomb partition of n to be an integer partition of n such that every ordered pair of distinct parts has a different difference.
Also the number of strict integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum.
The non-strict case is A325858.

Examples

			The a(2) = 1 through a(11) = 11 partitions (A = 10, B = 11):
  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
       (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                   (41)  (51)  (52)   (62)   (63)   (73)   (74)
                               (61)   (71)   (72)   (82)   (83)
                               (421)  (431)  (81)   (91)   (92)
                                      (521)  (621)  (532)  (A1)
                                                    (541)  (542)
                                                    (631)  (632)
                                                    (721)  (641)
                                                           (731)
                                                           (821)
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]
  • Python
    from collections import Counter
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A325876(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1)-(n&1^1) if n else 1 # Chai Wah Wu, Sep 17 2023

A325994 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient.

Original entry on oeis.org

42, 84, 126, 168, 210, 230, 252, 294, 336, 378, 390, 399, 420, 460, 462, 504, 546, 588, 630, 672, 690, 714, 742, 756, 780, 798, 840, 882, 920, 924, 966, 1008, 1050, 1092, 1134, 1150, 1170, 1176, 1197, 1218, 1260, 1302, 1344, 1365, 1380, 1386, 1428, 1470, 1484
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    42: {1,2,4}
    84: {1,1,2,4}
   126: {1,2,2,4}
   168: {1,1,1,2,4}
   210: {1,2,3,4}
   230: {1,3,9}
   252: {1,1,2,2,4}
   294: {1,2,4,4}
   336: {1,1,1,1,2,4}
   378: {1,2,2,2,4}
   390: {1,2,3,6}
   399: {2,4,8}
   420: {1,1,2,3,4}
   460: {1,1,3,9}
   462: {1,2,4,5}
   504: {1,1,1,2,2,4}
   546: {1,2,4,6}
   588: {1,1,2,4,4}
   630: {1,2,2,3,4}
   672: {1,1,1,1,1,2,4}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Divide@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A058411 Numbers k such that k^2 contains only digits {0,1,2}, not ending with zero.

Original entry on oeis.org

1, 11, 101, 149, 1001, 1011, 1101, 10001, 10011, 11001, 14499, 100001, 100011, 100101, 101001, 110001, 316261, 1000001, 1000011, 1000101, 1010001, 1010011, 1100001, 1100101, 10000001, 10000011, 10000101, 10001001, 10001011, 10001101, 10010001, 10100001, 10100011, 10110001
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Comments

Sporadic solutions (not consisting only of digits 0 and 1): a(4) = 149, a(11) = 14499, a(17) = 316261, a(209) = 4604367505011, a(715) = 10959977245460011, a(1015) = 110000500908955011, a(1665) = 10099510939154979751, ... Three infinite subsequences are given by numbers of the form 10...01, 10...011 and 110...01, but there are many others. - M. F. Hasler, Nov 14 2017
From Zhao Hui Du, Mar 12 2024: (Start)
Most terms have a special pattern in that they have only digits 0 and 1 and could be written as Sum_{h=0..t} 10^x(h), where 2x(h) and x(h1)+x(h2) are distinct and x(0)=0 for the nonzero ending constraint. The number of n-digit terms in the sequence in the special pattern is A143823(n) - 2*A143823(n-1) + A143823(n-2) for n >= 2.
Terms with only digits 0 and 1 but not in the special pattern exist as well. If we define f(x) = 1 + x^768 + x^960 + x^1008 + x^1020 + x^1028 + x^1040 + x^1088 + x^1280 + x^2048, f(x)^2 is a function with all nonzero coefficients 1,2,10 (the only coefficient of x^2048 is 10 and the coefficient of x^2049 is 0). So f(10) is in the sequence but not in the special pattern. (End)

Crossrefs

Cf. A058412 (the squares); A058412, ..., A058474 (other 3-digit combinations).
Cf. A063009, A066139. - Zak Seidov, Jul 01 2013

Programs

  • Magma
    [n: n in [1..2*10^8 by 2] | Set(Intseq(n^2)) subset [0,1,2]]; // Vincenzo Librandi, Feb 24 2016
  • Maple
    R[1]:= {1,9};
    for m from 2 to 10 do
      R[m]:= select(t -> max(convert(t^2 mod 10^m, base, 10)) <= 2, map(s -> seq(s + i*10^(m-1),i=0..9), R[m-1]))
    od:
    Res:= {seq(op(select(t -> t >= 10^(m-1) and max(convert(t^2,base,10)) <= 2, R[m])),m=1..10)}:
    sort(convert(Res,list)); # Robert Israel, Feb 23 2016
  • Mathematica
    Select[Range[10^6], And[Total@ Take[RotateRight@ DigitCount@ #, -7] == 0, Mod[#, 10] != 0] &[#^2] &] (* Michael De Vlieger, Nov 14 2017 *)
  • PARI
    isok(n)={ n%10 && vecmax(digits(n^2)) < 3 } \\ Michel Marcus, Feb 24 2016, edited by M. F. Hasler, Nov 14 2017
    
  • Python
    A058411_list = [i for i in range(10**6) if i % 10 and max(str(i**2)) < '3'] # Chai Wah Wu, Feb 23 2016
    

Formula

a(n) = sqrt(A058412(n)). - Zak Seidov, Jul 01 2013

Extensions

b-file corrected by Zhao Hui Du, Mar 07 2024

A325685 Number of compositions of n whose distinct consecutive subsequences have different sums, and such that these sums cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 3, 5, 3, 9, 1, 9, 5, 7, 5, 11, 1, 13, 5, 9, 5, 13, 3, 13, 7, 9, 5, 17, 1, 17, 5, 9, 9, 15, 5, 15, 5, 13, 5, 21, 1, 17, 9, 9, 9, 17, 3, 21, 7, 13, 5, 17, 5, 21, 9, 13, 5, 21, 1, 21, 9, 11, 13, 19, 5, 17, 5, 17, 5, 29, 1, 21, 9, 9, 13, 17, 5, 25, 7, 17, 7
Offset: 0

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Compare to the definition of perfect partitions (A002033).

Examples

			The distinct consecutive subsequences of (3,4,1,1) together with their sums are:
   1: {1}
   2: {1,1}
   3: {3}
   4: {4}
   5: {4,1}
   6: {4,1,1}
   7: {3,4}
   8: {3,4,1}
   9: {3,4,1,1}
Because the sums are all different and cover {1...9}, it follows that (3,4,1,1) is counted under a(9).
The a(1) = 1 through a(9) = 9 compositions:
  1   11   12    1111   113     132      1114      1133       1143
           21           122     231      1222      3311       1332
           111          221     111111   2221      11111111   2331
                        311              4111                 3411
                        11111            1111111              11115
                                                              12222
                                                              22221
                                                              51111
                                                              111111111
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Sort[Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]]==Range[n]&]],{n,0,15}]

Extensions

a(21)-a(25) from Jinyuan Wang, Jun 26 2020
a(21)-a(25) corrected, a(26)-a(80) from Fausto A. C. Cariboni, Feb 21 2022
Previous Showing 21-30 of 74 results. Next