A268581
a(n) = 2*n^2 + 8*n + 5.
Original entry on oeis.org
5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0
Cf. numbers n such that 2*n + k is a perfect square:
A093328 (k=-6),
A097080 (k=-5), no sequence (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5), this sequence (k=6),
A059993 (k=7),
A147973 (k=8),
A139570 (k=9), no sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181570 (k=13).
-
[2*n^2+8*n+5: n in [0..60]];
-
[n: n in [0..6000] | IsSquare(2*n+6)];
-
Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
-
lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
-
[2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021
Changed offset from 1 to 0, adapted formulas and programs by
Bruno Berselli, Apr 13 2016
A271625
a(n) = = 2*(n+1)^2 - 5.
Original entry on oeis.org
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1
Numbers h such that 2*h + k is a perfect square:
A294774 (k=-9),
A255843 (k=-8),
A271649 (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9), this sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 + 4*n - 3: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n+10)];
-
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
-
x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
def A271625(n): return 2*pow(n+1,2) - 5
print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
A144650
Triangle read by rows where T(m,n) = 2m*n + m + n + 1.
Original entry on oeis.org
5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1
Triangle begins:
5;
8, 13;
11, 18, 25;
14, 23, 32, 41;
17, 28, 39, 50, 61;
20, 33, 46, 59, 72, 85;
23, 38, 53, 68, 83, 98, 113;
26, 43, 60, 77, 94, 111, 128, 145;
29, 48, 67, 86, 105, 124, 143, 162, 181;
32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
-
[2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
-
T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
-
flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023
A271624
a(n) = 2*n^2 - 4*n + 4.
Original entry on oeis.org
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
Offset: 1
a(1) = 2*1^2 - 4*1 + 4 = 2.
Cf.
A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9),
A255843 (k = -8),
A271649 (k = -7),
A093328 (k = -6),
A097080 (k = -5), this sequence (k = -4),
A051890 (k = -3),
A058331 (k = -2),
A001844 (k = -1),
A001105 (k = 0),
A046092 (k = 1),
A056222 (k = 2),
A142463 (k = 3),
A054000 (k = 4),
A090288 (k = 5),
A268581 (k = 6),
A059993 (k = 7), (-1)*
A147973 (k = 8),
A139570 (k = 9),
A271625 (k = 10),
A222182 (k = 11),
A152811 (k = 12),
A181510 (k = 13),
A161532 (k = 14), no sequence (k = 15).
-
[ 2*n^2 - 4*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-4)];
-
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{2,4,10},60] (* Harvey P. Dale, Jul 18 2023 *)
-
x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A248161
Expansion of (2-x+x^2)/((1+x)*(1-3*x+x^2)).
Original entry on oeis.org
2, 3, 11, 26, 71, 183, 482, 1259, 3299, 8634, 22607, 59183, 154946, 405651, 1062011, 2780378, 7279127, 19056999, 49891874, 130618619, 341963987, 895273338, 2343856031, 6136294751, 16065028226, 42058789923, 110111341547
Offset: 0
-
[-(Fibonacci(n)^2 +Fibonacci(n+1)^2 + Fibonacci(n+2)^2 - Fibonacci(n+3)^2): n in [0..30]]; // Vincenzo Librandi, Nov 01 2014
-
CoefficientList[Series[(2 - x + x^2)/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 01 2014 *)
With[{F=Fibonacci}, Table[F[2*n+2] +F[n]*F[n+1] +(-1)^n, {n,0,40}]] (* G. C. Greubel, May 30 2025 *)
-
def A248161(n): return fibonacci(2*n+2) +fibonacci(n)*fibonacci(n+1) +(-1)^n
print([A248161(n) for n in range(41)]) # G. C. Greubel, May 30 2025
A271649
a(n) = 2*(n^2 - n + 2).
Original entry on oeis.org
4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1
a(1) = 2*(1^2 - 1 + 2) = 4.
Numbers h such that 2*h + k is a perfect square: no sequence (k=-9),
A255843 (k=-8), this sequence (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9),
A271625 (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 - 2*n + 4: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n-7)];
-
A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
-
Table[2 (n^2 - n + 2), {n, 53}] (* or *)
Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
-
a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017
A211394
T(n,k) = (k+n)*(k+n-1)/2-(k+n-1)*(-1)^(k+n)-k+2; n , k > 0, read by antidiagonals.
Original entry on oeis.org
1, 5, 6, 2, 3, 4, 12, 13, 14, 15, 7, 8, 9, 10, 11, 23, 24, 25, 26, 27, 28, 16, 17, 18, 19, 20, 21, 22, 38, 39, 40, 41, 42, 43, 44, 45, 29, 30, 31, 32, 33, 34, 35, 36, 37, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 80
Offset: 1
The start of the sequence as table:
1....5...2..12...7..23..16...
6....3..13...8..24..17..39...
4...14...9..25..18..40..31...
15..10..26..19..41..32..60...
11..27..20..42..33..61..50...
28..21..43..34..62..51..85...
22..44..35..63..52..86..73...
. . .
The start of the sequence as triangle array read by rows:
1;
5,6;
2,3,4;
12,13,14,15;
7,8,9,10,11;
23,24,25,26,27,28;
16,17,18,19,20,21,22;
. . .
Row number r matches with r numbers segment {(r+1)*r/2-r*(-1)^(r+1)-r+2,... (r+1)*r/2-r*(-1)^(r+1)+1}.
Cf.
A130883,
A096376,
A033816,
A100037,
A100038,
A084849,
A000384,
A014106,
A014105,
A014107,
A091823,
A071355,
A168244,
A033537,
A100040,
A130861,
A100041,
A058331,
A001844,
A001105,
A046092,
A056220,
A142463,
A054000,
A090288,
A059993,
A147973,
A139570,
A051890,
A005893,
A097080,
A093328,
A137882.
-
T[n_, k_] := (n+k)(n+k-1)/2 - (-1)^(n+k)(n+k-1) - k + 2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
j=(t*t+3*t+4)/2-n
result=(t+2)*(t+1)/2-(t+1)*(-1)**t-j+2
A294774
a(n) = 2*n^2 + 2*n + 5.
Original entry on oeis.org
5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0
Second column of Mathar's array in
A016813 (Comments section).
Similar sequences (see the first comment):
A161532 (k=-14),
A181510 (k=-13),
A152811 (k=-12),
A222182 (k=-11),
A271625 (k=-10),
A139570 (k=-9), (-1)*
A147973 (k=-8),
A059993 (k=-7),
A268581 (k=-6),
A090288 (k=-5),
A054000 (k=-4),
A142463 or
A132209 (k=-3),
A056220 (k=-2),
A046092 (k=-1),
A001105 (k=0),
A001844 (k=1),
A058331 (k=2),
A051890 (k=3),
A271624 (k=4),
A097080 (k=5),
A093328 (k=6),
A271649 (k=7),
A255843 (k=8), this sequence (k=9).
-
seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
-
Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
-
Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017
A147974
a(n) = n^3-((n-1)^3+(n-2)^3+(n-3)^3).
Original entry on oeis.org
10, 8, 18, 28, 26, 0, -62, -172, -342, -584, -910, -1332, -1862, -2512, -3294, -4220, -5302, -6552, -7982, -9604, -11430, -13472, -15742, -18252, -21014, -24040, -27342, -30932, -34822, -39024, -43550, -48412, -53622, -59192, -65134, -71460
Offset: 1
-
lst={};Do[k=n^3-((n-1)^3+(n-2)^3+(n-3)^3);AppendTo[lst,k],{n,5!}];lst
-
def a(n): return n**3-((n-1)**3+(n-2)**3+(n-3)**3)
print([a(n) for n in range(1, 37)]) # Michael S. Branicky, Oct 08 2021
Comments