A232325
Engel expansion of 1 to the base Pi.
Original entry on oeis.org
4, 12, 72, 2111, 14265, 70424, 308832, 4371476, 320218450, 1101000257, 14020589841, 102772320834, 963205851651, 5997003656523, 50649135127796, 640772902021920, 2101002284323870, 35029677728070645, 176996397541889098, 1433436623499128186
Offset: 0
Truncation F_5(z) = 1 - ( z/4 + z^2/(4*12) + z^3/(4*12*72) + z^4/(4*12*72*2111) + z^5/(4*12*72*2111*14265) ). The polynomial has a positive real zero at z = 3.14159 26535 (9...), which agrees with Pi to 10 decimal places.
Comparison of generalized Engel expansions of 1 to the base Pi.
A232325: Engel series expansion of 1 to the base Pi
1 = Pi/4 + Pi^2/(4*12) + Pi^3/(4*12*72) + Pi^4/(4*12*72*2111) + ....
A232326: Pierce series expansion of 1 to the base Pi
1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + - ....
Running the algorithm with the input values r = 1 and base -Pi produces the expansion
1 = Pi/3 - Pi^2/(3*70) - Pi^3/(3*70*740) + Pi^4/(3*70*740*6920) + - - + ....
Running the algorithm with the input values r = -1 and base -Pi produces the expansion
1 = Pi/4 + Pi^2/(4*11) - Pi^3/(4*11*73) - Pi^4/(4*11*73*560) + + - - ....
-
# Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
map_iterate := proc(n,b,x) option remember;
if n = 0 then
x
else
-1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
end if
end proc:
# Define the terms of the expansion of x to the base b
a := n -> ceil(evalf(b/map_iterate(n,b,x))):
Digits:= 500:
# Choose values for x and b
x := 1: b:= Pi:
seq(a(n), n = 0..19);
A135351
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.
Original entry on oeis.org
0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0
-
List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
-
a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
-
G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
-
Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
-
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
-
[(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
A199116
a(n) = 6*4^n + 1.
Original entry on oeis.org
7, 25, 97, 385, 1537, 6145, 24577, 98305, 393217, 1572865, 6291457, 25165825, 100663297, 402653185, 1610612737, 6442450945, 25769803777, 103079215105, 412316860417, 1649267441665, 6597069766657, 26388279066625, 105553116266497, 422212465065985, 1688849860263937
Offset: 0
-
[6*4^n+1: n in [0..30]];
-
6*4^Range[0,30]+1 (* or *) LinearRecurrence[{5,-4},{7,25},30] (* Harvey P. Dale, Apr 18 2024 *)
A199561
a(n) = 3*9^n + 1.
Original entry on oeis.org
4, 28, 244, 2188, 19684, 177148, 1594324, 14348908, 129140164, 1162261468, 10460353204, 94143178828, 847288609444, 7625597484988, 68630377364884, 617673396283948, 5559060566555524, 50031545098999708, 450283905890997364, 4052555153018976268, 36472996377170786404
Offset: 0
-
[3*9^n+1: n in [0..30]];
-
3*9^Range[0,20]+1 (* or *) LinearRecurrence[{10,-9},{4,28},20] (* Harvey P. Dale, Jul 30 2019 *)
A224195
Ordered sequence of numbers of form (2^n - 1)*2^m + 1 where n >= 1, m >= 1.
Original entry on oeis.org
3, 5, 7, 9, 13, 15, 17, 25, 29, 31, 33, 49, 57, 61, 63, 65, 97, 113, 121, 125, 127, 129, 193, 225, 241, 249, 253, 255, 257, 385, 449, 481, 497, 505, 509, 511, 513, 769, 897, 961, 993, 1009, 1017, 1021, 1023, 1025, 1537, 1793, 1921, 1985, 2017, 2033, 2041, 2045, 2047
Offset: 1
Using the lexicographic ordering of A057555 the sequence is:
A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)...
+1 | 2 4 8 16 32 64 128 256 512 1024 ...
----|-----------------------------------------------------------------
1 | 3 5 9 17 33 65 129 257 513 1025
3 | 7 13 25 49 97 193 385 769 1537 3073
7 | 15 29 57 113 225 449 897 1793 3585 7169
15 | 31 61 121 241 481 961 1921 3841 7681 15361
31 | 63 125 249 497 993 1985 3969 7937 15873 31745
63 | 127 253 505 1009 2017 4033 8065 16129 32257 64513
127 | 255 509 1017 2033 4065 8129 16257 32513 65025 130049
255 | 511 1021 2041 4081 8161 16321 32641 65281 130561 261121
511 | 1023 2045 4089 8177 16353 32705 65409 130817 261633 523265
1023| 2047 4093 8185 16369 32737 65473 130945 261889 523777 1047553
...
-
//program generates values in a table form
for i:=1 to 10 do
m:=2^i - 1;
m,[ m*2^n +1 : n in [1..10]];
end for;
//program generates sequence in lexicographic ordering of A057555, read
//along antidiagonals from top. Primes in the sequence are marked with *.
for i:=2 to 18 do
for j:=1 to i-1 do
m:=2^j -1;
k:=m*2^(i-j) + 1;
if IsPrime(k) then k,"*";
else k;
end if;;
end for;
end for;
-
Table[(2^j-1)*2^(i-j+1) + 1, {i, 10}, {j, i}] (* Paolo Xausa, Apr 02 2024 *)
A340666
A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, 256, ...
3, 3, 3, 3, 3, 3, 3, 3, 3, ...
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, ...
3, 5, 9, 17, 33, 65, 129, 257, 513, ...
3, 6, 12, 24, 48, 96, 192, 384, 768, ...
7, 7, 7, 7, 7, 7, 7, 7, 7, ...
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ...
...
Rows n=0..17, 19 give:
A000004,
A000012,
A000079,
A010701,
A000302,
A000051(k+1),
A007283,
A010727,
A001018,
A087289,
A007582(k+1),
A062709(k+2),
A164346,
A181565(k+1),
A005009,
A181404(k+3),
A001025,
A199493,
A253208(k+1).
-
A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n<2, n,
`if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)
A199115
a(n) = 5*4^n+1.
Original entry on oeis.org
6, 21, 81, 321, 1281, 5121, 20481, 81921, 327681, 1310721, 5242881, 20971521, 83886081, 335544321, 1342177281, 5368709121, 21474836481, 85899345921, 343597383681, 1374389534721, 5497558138881, 21990232555521, 87960930222081
Offset: 0
-
[5*4^n+1: n in [0..30]];
-
5*4^Range[0,30]+1 (* or *) LinearRecurrence[{5,-4},{6,21},30] (* Harvey P. Dale, Oct 19 2024 *)
A199493
a(n) = 2*8^n+1.
Original entry on oeis.org
3, 17, 129, 1025, 8193, 65537, 524289, 4194305, 33554433, 268435457, 2147483649, 17179869185, 137438953473, 1099511627777, 8796093022209, 70368744177665, 562949953421313, 4503599627370497, 36028797018963969
Offset: 0
Original entry on oeis.org
5, 33, 257, 2049, 16385, 131073, 1048577, 8388609, 67108865, 536870913, 4294967297, 34359738369, 274877906945, 2199023255553, 17592186044417, 140737488355329, 1125899906842625, 9007199254740993, 72057594037927937
Offset: 0
-
[4*8^n+1: n in [0..30]];
-
4*8^Range[0,20]+1 (* or *) LinearRecurrence[{9,-8},{5,33},20] (* Harvey P. Dale, Mar 18 2018 *)
A206373
a(n) = (14*4^n + 1)/3.
Original entry on oeis.org
5, 19, 75, 299, 1195, 4779, 19115, 76459, 305835, 1223339, 4893355, 19573419, 78293675, 313174699, 1252698795, 5010795179, 20043180715, 80172722859, 320690891435, 1282763565739, 5131054262955, 20524217051819, 82096868207275, 328387472829099, 1313549891316395
Offset: 0
-
[(14*4^n+1)/3 : n in [0..30]];
-
(14*4^Range[0,30]+1)/3 (* or *) LinearRecurrence[{5,-4},{5,19},30] (* Harvey P. Dale, Jan 13 2023 *)
-
a(n)=(14*4^n + 1)/3 \\ Charles R Greathouse IV, Jun 01 2015
-
[(7*2^(2*n+1)+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023
Comments