cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A228577 The number of 1-length gaps in all possible covers of n-length line by 2-length segments.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 6, 7, 12, 17, 24, 36, 50, 72, 102, 143, 202, 282, 394, 549, 762, 1057, 1462, 2019, 2784, 3832, 5268, 7232, 9916, 13581, 18580, 25394, 34674, 47303, 64478, 87819, 119520, 162549, 220920, 300060, 407302, 552552, 749186, 1015259, 1375134
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 26 2013

Keywords

Comments

2-gaps must be filled, so, for example, xxoo doesn't count for n=4. - Jon Perry, Nov 18 2014

Examples

			For n=6 we have xxoxxo, oxxxxo and oxxoxx, so a(6) = number of o's = 6. - _Jon Perry_, Nov 18 2014
		

References

  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Eqn. (3.13). - N. J. A. Sloane, Jan 11 2022

Crossrefs

Programs

  • Magma
    I:=[0,1,0,2,2,3]; [n le 6 select I[n] else 2*Self(n-2)+2*Self(n-3)-Self(n-4)-2*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Nov 18 2014
  • Maple
    A228577 := proc(n) coeftayl(x/(x^3+x^2-1)^2, x=0, n); end proc: seq(A228577(n), n=0..50); # Wesley Ivan Hurt, Nov 17 2014
  • Mathematica
    CoefficientList[Series[x/(x^3 + x^2 - 1)^2, {x, 0, 100}], x]

Formula

For n>1, a(n) = n * A228361(n) - 2 * A228364(n).
G.f.: x/(x^3 + x^2 - 1)^2, convolution of A182097 by itself.
a(n) = 2*a(n-2) +2*a(n-3) -a(n-4) -2*a(n-5) -a(n-6) for n>5.
(n-1)*a(n) - (n+1)*a(n-2) - (n+2)*a(n-3) = 0 for n>2. - Michael D. Weiner, Nov 18 2014

A246690 Number A(n,k) of compositions of n into parts of the k-th list of distinct parts in the order given by A246688; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 1, 0, 1, 1, 5, 0, 1, 0, 1, 1, 0, 2, 0, 8, 1, 1, 0, 1, 0, 1, 0, 3, 0, 13, 0, 1, 0, 1, 0, 1, 1, 1, 4, 1, 21, 1, 1, 0, 1, 1, 0, 1, 2, 0, 6, 0, 34, 0, 1, 0, 1, 1, 2, 0, 1, 3, 0, 9, 0, 55, 1, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 01 2014

Keywords

Comments

The first lists of distinct parts in the order given by A246688 are: 0:[], 1:[1], 2:[2], 3:[1,2], 4:[3], 5:[1,3], 6:[4], 7:[1,4], 8:[2,3], 9:[5], 10:[1,2,3], 11:[1,5], 12:[2,4], 13:[6], 14:[1,2,4], 15:[1,6], 16:[2,5], 17:[3,4], 18:[7], 19:[1,2,5], 20:[1,3,4], ... .

Examples

			Square array A(n,k) begins:
  1, 1, 1,  1, 1,  1, 1,  1, 1, 1,   1, 1, 1, 1,   1, ...
  0, 1, 0,  1, 0,  1, 0,  1, 0, 0,   1, 1, 0, 0,   1, ...
  0, 1, 1,  2, 0,  1, 0,  1, 1, 0,   2, 1, 1, 0,   2, ...
  0, 1, 0,  3, 1,  2, 0,  1, 1, 0,   4, 1, 0, 0,   3, ...
  0, 1, 1,  5, 0,  3, 1,  2, 1, 0,   7, 1, 2, 0,   6, ...
  0, 1, 0,  8, 0,  4, 0,  3, 2, 1,  13, 2, 0, 0,  10, ...
  0, 1, 1, 13, 1,  6, 0,  4, 2, 0,  24, 3, 3, 1,  18, ...
  0, 1, 0, 21, 0,  9, 0,  5, 3, 0,  44, 4, 0, 0,  31, ...
  0, 1, 1, 34, 0, 13, 1,  7, 4, 0,  81, 5, 5, 0,  55, ...
  0, 1, 0, 55, 1, 19, 0, 10, 5, 0, 149, 6, 0, 0,  96, ...
  0, 1, 1, 89, 0, 28, 0, 14, 7, 1, 274, 8, 8, 0, 169, ...
		

Crossrefs

Main diagonal gives A246691.
Cf. A246688, A246720 (the same for partitions).

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    f:= proc() local i, l; i, l:=0, [];
          proc(n) while n>=nops(l)
            do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1]
          end
        end():
    g:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(i>n, 0, g(n-i, l)), i=l))
        end:
    A:= (n, k)-> g(n, f(k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]];
    f = Module[{i = 0, l = {}}, Function[n, While[n >= Length[l], l = Join[l, b[i, 1]]; i++]; l[[n + 1]]]];
    g[n_, l_] := g[n, l] = If[n==0, 1, Sum[If[i>n, 0, g[n - i, l]], {i, l}]];
    A[n_, k_] := g[n, f[k]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

A378716 Triangle read by rows: T(n,k) is the number of k-Fibonacci polyominoes with an area of n, with k > 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 3, 0, 1, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 5, 3, 1, 1, 0, 0, 0, 1, 7, 1, 1, 1, 0, 0, 0, 0, 1, 9, 5, 2, 0, 1, 0, 0, 0, 0, 1, 12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1, 16, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 21, 10, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 3

Views

Author

Stefano Spezia, Dec 05 2024

Keywords

Examples

			The triangle begins as:
   1;
   1, 1;
   1, 0, 1;
   2, 1, 0, 1;
   2, 2, 0, 0, 1;
   3, 0, 1, 0, 0, 1;
   4, 2, 1, 0, 0, 0, 1;
   5, 3, 1, 1, 0, 0, 0, 1;
   7, 1, 1, 1, 0, 0, 0, 0, 1;
   9, 5, 2, 0, 1, 0, 0, 0, 0, 1;
  12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A079957 (k=3), A182097 (k=2), A378704, A378706, A378707.

Programs

  • Mathematica
    T[n_, k_]:=SeriesCoefficient[1/(1-Sum[x^((k+i)(k-i+1)/2), {i, k}]), {x, 0, n}]; Table[T[n, k], {n, 2, 14}, {k, 2,n}]//Flatten

Formula

T(n, k) = [x^n] 1/(1 - Sum_{i=1..k} x^((k+i)*(k-i+1)/2) ).

A099559 a(n) = Sum_{k=0..floor(n/5)} C(n-4k,k+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 10, 14, 19, 25, 33, 44, 59, 79, 105, 139, 184, 244, 324, 430, 570, 755, 1000, 1325, 1756, 2327, 3083, 4084, 5410, 7167, 9495, 12579, 16664, 22075, 29243, 38739, 51319, 67984, 90060, 119304, 158044, 209364, 277349, 367410, 486715
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Crossrefs

Cf. A098578.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,0,1,-1},{0,1,2,3,4,5},50] (* Harvey P. Dale, Feb 20 2017 *)
  • PARI
    a(n) = sum(k=0,n\5, binomial(n-4*k, k+1)); \\ Michel Marcus, Jul 11 2018

Formula

Partial sums of A003520 (with leading zero).
G.f.: x / ( (x-1)*(x^2-x+1)*(x^3+x^2-1) ).
a(n) = 2a(n-1)-a(n-2)+a(n-5)-a(n-6).
7*a(n) = A117373(n+2) -7 +10*b(n) +15*b(n-1) +9*b(n-2), where b(n) = A182097(n). - R. J. Mathar, Aug 07 2017
a(n) = A003520(n+4) -1. - R. J. Mathar, Aug 07 2017

Extensions

Values from a(5) on corrected by R. J. Mathar, Jul 29 2008

A141683 a(n) = Sum_{k=1..n} b(k)*a(n - k) for n >= 1, where b(n) = b(n-2) + b(n-3) for n >= 3 with b(0) = 0 and b(1) = b(2) = 1.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 41, 88, 189, 406, 872, 1873, 4023, 8641, 18560, 39865, 85626, 183916, 395033, 848491, 1822473, 3914488, 8407925, 18059374, 38789712, 83316385, 178955183, 384377665, 825604416, 1773314929, 3808901426
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 07 2008

Keywords

Comments

Essentially the same as A141015. - R. J. Mathar, Sep 14 2008

Crossrefs

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x^2-x^3)/(1-x-2*x^2-x^3))); // G. C. Greubel, Jun 05 2018
  • Mathematica
    (* b = A000931 *)
    b[0]=0; b[1]=1; b[2]=1; b[n_]:= b[n]= b[n-2] + b[n-3];
    a[1]=1; a[n_]:= a[n]= Sum[b[k]*a[n-k], {k,n-1}];
    Table[a[n], {n, 35}]
    (* or *)
    LinearRecurrence[{1, 2, 1}, {1, 1, 2, 4}, 31] (* Georg Fischer, Mar 23 2019 *)
  • PARI
    x='x+O('x^35); Vec(x*(1-x^2-x^3)/(1-x-2*x^2-x^3)) \\ G. C. Greubel, Jun 05 2018
    

Formula

a(n) = Sum_{k=1..n} b(k)*a(n - k) for n >= 1, where b(n) = b(n-2) + b(n-3) for n >= 3 with b(0) = 0 and b(1) = b(2) = 1. [That is, b(n) = A000931(n+4) = A078027(n+6) = A134816(n) = A182097(n+1). - Petros Hadjicostas, Aug 09 2020]
From Colin Barker, Feb 01 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3), n > 4.
G.f.: x*(1 - x^2 - x^3)/(1 - x - 2*x^2 - x^3). (End)
a(n) = A000930(2*n - 3) for n >= 3. - Georg Fischer, Mar 23 2019

A373740 Expansion of e.g.f. exp(x^2/2 * (1 + x)).

Original entry on oeis.org

1, 0, 1, 3, 3, 30, 105, 315, 2625, 11340, 57645, 467775, 2505195, 17027010, 142026885, 922296375, 7493911425, 65886420600, 503693415225, 4625660914875, 43369908657075, 379618464975750, 3824934458169825, 38406952928819475, 376103907454500225
Offset: 0

Views

Author

Seiichi Manyama, Jun 16 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(k, n-2*k)/(2^k*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(k,n-2*k)/(2^k * k!).
a(n) = (n-1)/2 * (2*a(n-2) + 3*(n-2)*a(n-3)).

A236583 The number of tilings of an 8 X (3n) floor with 2 X 3 hexominoes.

Original entry on oeis.org

1, 1, 4, 11, 33, 96, 281, 821, 2400, 7015, 20505, 59936, 175193, 512089, 1496836, 4375251, 12788857, 37381824, 109267057, 319387565, 933569728, 2728823951, 7976351345, 23314871872, 68149361393
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000079 (5 X n floor), A182097 (6 X n floor), A000244 (7 X n floor), A236584 (9 x 2n floor)

Programs

  • Maple
    g := (-1+x)^2/(x^3-x^4+1-3*x) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;

Formula

G.f.: (-1+x)^2/(x^3-x^4+1-3*x).

A236584 The number of tilings of a 9 X (2n) floor with 2 X 3 hexominoes.

Original entry on oeis.org

1, 1, 1, 5, 11, 19, 45, 105, 219, 475, 1061, 2313, 5027, 11035, 24173, 52793, 115499, 252827, 552981, 1209545, 2646419, 5789563, 12664925, 27706873, 60614235, 132602171, 290087749, 634616521, 1388325507, 3037181147
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A000079 (5Xn floor), A182097 (6Xn floor), A000244 (7Xn floor), A236583 (8X3n floor)

Programs

  • Maple
    g := (1-x)/(-4*x^3+1-2*x+x^2+2*x^4) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;

Formula

G.f.: (1-x)/(-4*x^3+1-2*x+x^2+2*x^4).

A281791 Ways to tile a 5 X (2n+1) floor with tatami mats, including one monomer.

Original entry on oeis.org

3, 18, 10, 8, 18, 24, 32, 52, 68, 100, 142, 196, 280, 388, 542, 756, 1046, 1452, 2006, 2768, 3816, 5248, 7212, 9896, 13562, 18568, 25392, 34692, 47354, 64580, 88002, 119824, 163034, 221672, 301200, 409004, 555060, 752844, 1020550, 1382732, 1872520, 2534596, 3429206, 4637556, 6269070
Offset: 0

Views

Author

Yasutoshi Kohmoto, Jan 30 2017

Keywords

Comments

Apart from a single 1 X 1 monomer, the area is tiled with 2 X 1 mats. No four mats are permitted to meet at a point.

Examples

			For n=0, the 5X1 floor allows the monomer to be placed at one of the two ends or in the middle: a(n=0)=3.
		

Crossrefs

Cf. A271786 [3X(2n+1) floor]. 2nd column of A272474.

Programs

  • PARI
    s1(n)=my(s); forstep(k=(n%4!=1),(n-1)\6,2, s+=((n+3)/4-k/2)*((n-1)/4-k/2)!/(k!*((n-1)/4-3*k/2)!)); 2*s
    s3(n)=my(s); forstep(k=(n%4==1),(n-3)\6,2, s+=((n-3)/4-k/2)!/(k!*((n-3)/4-3*k/2)!)); 2*s
    s5(n)=my(s); forstep(k=(n%4!=1),(n-5)\6,2, s+=((n+7)/4-k/2)*((n-5)/4-k/2)!/(k!*((n-5)/4-3*k/2)!)); 2*s
    a(n)=s1(n) + s3(n) + s5(n) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = S_1(2n+1) + S_5(2n+1) + S_3(2n+1) for n>1 where
S_1(n) = 2* Sum_{k= 0<=k<=[(n-1)/6]} ((n+3)/4-1/2*k) *((n-1)/4-1/2*k)!/(k!*((n-1)/4-3/2*k)!). The sum is over even k if n==1 (mod 4), else over odd k.
S_5(n) = 2* Sum_{0<=k<=[(n-5)/6]} ((n+7)/4-1/2*k) *((n-5)/4-1/2*k)!/(k!*((n-5)/4-3/2*k)!). The sum is over even k if n==1 (mod 4) else over odd k.
S_3(n) = 2* Sum_{0<=k<=[(n-3)/6]} 2*((n-3)/4-1/2*k)!/(k!*((n-3)/4-3/2*k)!). The sum is over odd k if n==1 (mod 4), else over even k.
Where [m] is floor(m).
G.f. x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. (Includes zeros for even floor widths).- R. J. Mathar, Apr 10 2017
a(n) = 2*(A228577(n-1)+A228577(n+1))+4*(A182097(n-2)+A182097(n-1)), n>1. - R. J. Mathar, Apr 10 2017
Previous Showing 21-29 of 29 results.