cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A371770 a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-3*k-1,n-3*k).

Original entry on oeis.org

1, 2, 10, 57, 338, 2057, 12741, 79914, 505954, 3226638, 20696685, 133382658, 862978221, 5601919325, 36467212610, 237974911737, 1556281907586, 10196788555859, 66921360130374, 439860632463462, 2895002186799453, 19077000179746293, 125849150650146714
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(3*n-3*k-1,n-3*k),k=0..n/3) end proc:
    map(f, [$0..30]); # Robert Israel, Feb 28 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(3*n-3*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x^3) * (1-x)^(2*n)).
a(n) = binomial(3*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [1/3-n, 2/3-n, 1-n], 1). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 18*n*(2*n - 1)*(13*n - 22)*(37*n - 51)*a(n) = 3*(40885*n^4 - 165468*n^3 + 229373*n^2 - 125562*n + 22680)*a(n-1) - (40885*n^4 - 165468*n^3 + 229373*n^2 - 125562*n + 22680)*a(n-2) + 3*(3*n - 5)*(3*n - 4)*(13*n - 9)*(37*n - 14)*a(n-3).
a(n) ~ 3^(3*n + 5/2) / (13 * sqrt(Pi*n) * 2^(2*n+1)). (End)

A199033 Number of ways to place n non-attacking bishops on a 2 X 2n board.

Original entry on oeis.org

1, 4, 22, 128, 771, 4744, 29618, 186880, 1188679, 7608764, 48953224, 316283264, 2050706932, 13336273528, 86953633242, 568221290496, 3720529001823, 24403423540348, 160314652983158, 1054635453261568, 6946703172803003, 45809043607167328, 302395650703501688
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 02 2011

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n-j+1,j)*Binomial(n+j+1,n-j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    Table[Sum[Binomial[2n-j+1,j]*Binomial[n+j+1,n-j],{j,0,n}],{n,0,25}]
  • Maxima
    A199033(n):=sum(binomial(n+k+1, n-k)*binomial(2*n-k+1,k),k,0,n)$ makelist(A199033(n),n,0,22); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n+k+1, n-k)*binomial(2*n-k+1, k))}
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G^2/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 14 2012
    for(n=0,25,print1(a(n),", "))
    
  • Sage
    [sum(binomial(2*n-j+1,j)*binomial(n+j+1,n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 19 2019

Formula

Recurrence: (112*n^4 + 968*n^3 + 3048*n^2 + 4136*n + 2040)*a(n+2) = (728*n^4 + 5914*n^3 + 17550*n^2 + 22510*n + 10530)*a(n+1) + (189*n^4 + 1539*n^3 + 4578*n^2 + 5886*n + 2760)*a(n). - Vaclav Kotesovec, Oct 30 2011
a(n) = Sum_{j=0..n} (binomial(2n-j+1,j)*binomial(n+j+1,n-j)).
a(n) ~ 3^(3n+4)/2^(2n+5)/sqrt(3*Pi*n).
Self-convolution of A219197. - Paul D. Hanna, Nov 14 2012
G.f.: A(x) = G(x)^2 / (1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 14 2012
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(2*n+2)). - Ilya Gutkovskiy, Oct 25 2017

Extensions

Offset changed to 0 and a(0)=1 added by Paul D. Hanna, Nov 14 2012

A225006 Number of n X n 0..1 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

1, 2, 9, 50, 295, 1792, 11088, 69498, 439791, 2803658, 17978389, 115837592, 749321716, 4863369656, 31655226108, 206549749930, 1350638103791, 8848643946550, 58069093513635, 381650672631330, 2511733593767295, 16550500379912640, 109176697072162080
Offset: 0

Views

Author

R. H. Hardin, Apr 23 2013

Keywords

Comments

Diagonal of A225010.
Number of unimodal maps [1..n]->[1..n+1], see example. - Joerg Arndt, May 10 2013

Examples

			Some solutions for n=3
..0..1..1....0..1..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..1....0..0..0....0..0..0....0..1..0....0..0..1
..1..1..1....0..1..1....1..1..1....0..0..1....0..1..0....1..1..1....0..1..1
From _Joerg Arndt_, May 10 2013: (Start)
The a(2) = 9 unimodal maps [1,2]->[1,2,3] are
01:  [ 1 1 ]
02:  [ 1 2 ]
03:  [ 1 3 ]
04:  [ 2 1 ]
05:  [ 2 2 ]
06:  [ 2 3 ]
07:  [ 3 1 ]
08:  [ 3 2 ]
09:  [ 3 3 ]
(End)
		

Crossrefs

Cf. A088536 (unimodal maps [1..n]->[1..n]).

Programs

  • Mathematica
    a[n_] := Sum[Binomial[2d+n-1, n-1], {d, 0, n}]; Array[a, 30] (* Jean-François Alcover, Feb 17 2016, after Max Alekseyev *)
  • PARI
    { a(n) = polcoeff( (1+x+O(x^(2*n+1)))^(-n-1)/(1-x), 2*n) }

Formula

From Vaclav Kotesovec, May 22 2013: (Start)
Empirical: 4*n*(2*n-1)*(5*n-7)*a(n) = 2*(145*n^3 - 343*n^2 + 235*n - 48)*a(n-1) - 3*(3*n-4)*(3*n-2)*(5*n-2)*a(n-2).
a(n) ~ 3^(3*n+3/2)/(5*2^(2*n+1)*sqrt(Pi*n)). (End)
a(n) = A261668(n)+1.
a(n) = Sum_{d=0..n} binomial(2d+n-1,n-1). Also, a(n) is the coefficient of x^(2n) in (1+x)^(-n-1)/(1-x). - Max Alekseyev, Sep 14 2015
It appears that a(n) = Sum_{k = 0..2*n} (-1)^k*binomial(n+k,k). - Peter Bala, Oct 08 2021
From Seiichi Manyama, Apr 06 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-2*k-1,n-2*k).
a(n) = [x^n] 1/((1+x^2) * (1-x)^(2*n)). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 04 2017

A371742 a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-k,n-2*k).

Original entry on oeis.org

1, 3, 16, 92, 551, 3380, 21065, 132771, 843944, 5399802, 34731776, 224361283, 1454557294, 9458829681, 61670895633, 403003997300, 2638776935215, 17308508054848, 113709379928689, 748069400432262, 4927608724973776, 32495826854732633, 214521754579553129
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n-k, n-2*k));

Formula

a(n) = [x^n] 1/((1-x-x^2) * (1-x)^(2*n)).
a(n) ~ 3^(3*n + 3/2) / (5 * sqrt(Pi*n) * 2^(2*n)). - Vaclav Kotesovec, Apr 05 2024

A387085 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).

Original entry on oeis.org

1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0

Views

Author

Seiichi Manyama, Aug 16 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(2*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(2*n-k,n-k).
G.f.: 1/( 4*x - 1 + 2*sqrt(1 - 4*x) ).
G.f.: 1/(1 - 4*x*(-1+g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: g^2/((-2+3*g) * (2-g)) where g = 1+x*g^2 is the g.f. of A000108.
G.f.: B(x)^2/(1 + 2*(B(x)-1)), where B(x) is the g.f. of A000984.
D-finite with recurrence 3*n*a(n) +2*(-4*n+3)*a(n-1) +8*(-2*n+1)*a(n-2)=0. - R. J. Mathar, Aug 19 2025

A171822 Triangle T(n,k) = binomial(2*n-k, k)*binomial(n+k, 2*k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 30, 30, 1, 1, 70, 225, 70, 1, 1, 135, 980, 980, 135, 1, 1, 231, 3150, 7056, 3150, 231, 1, 1, 364, 8316, 34650, 34650, 8316, 364, 1, 1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1, 1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 19 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    9,     1;
  1,   30,    30,       1;
  1,   70,   225,      70,       1;
  1,  135,   980,     980,     135,       1;
  1,  231,  3150,    7056,    3150,     231,       1;
  1,  364,  8316,   34650,   34650,    8316,     364,       1;
  1,  540, 19110,  132132,  245025,  132132,   19110,     540,     1;
  1,  765, 39600,  420420, 1288287, 1288287,  420420,   39600,   765,    1;
  1, 1045, 75735, 1166880, 5465460, 9018009, 5465460, 1166880, 75735, 1045, 1;
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n-k, k)*Binomial(n+k, 2*k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 22 2021
  • Mathematica
    Table[Binomial[2*n-k, k]*Binomial[n+k, 2*k], {n,0,10}, {k,0,n}]//Flatten
  • Sage
    flatten([[binomial(2*n-k, k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 22 2021
    

Formula

T(n, k) = binomial(2*n-k, k)*binomial(n+k, 2*k) = A054142(n, k)*A085478(n, k).
Sum_{k=0..n} T(n, k) = Hypergeometric 4F3([-n, -n, 1/2 -n, n+1], [1/2, 1, -2*n], 1) = A183160(n). - G. C. Greubel, Feb 22 2021

Extensions

Edited by G. C. Greubel, Feb 22 2021

A226706 G.f.: 1 / sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

Original entry on oeis.org

1, 2, 22, 256, 3174, 40862, 539376, 7247448, 98684230, 1357638124, 18831752122, 262974273200, 3692853486768, 52102851020154, 738102882420440, 10492839572260176, 149623214762194182, 2139329701502229300, 30661862088900836964, 440404155129948147776
Offset: 0

Views

Author

Paul D. Hanna, Jun 15 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 256*x^3 + 3174*x^4 + 40862*x^5 +...
A related series is G(x) = 1 + x*G(x), which begins
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
where A(x) = 1/sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/sqrt(1+12*x*G^4-16*x*G^5), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(3*n+2*k,n-k)*C(3*n-2*k,k).
Self-convolution equals A226705.

A184553 a(n) = Sum_{k=0..n} C(3n+k,n-k)*C(4n-k,k).

Original entry on oeis.org

1, 6, 79, 1158, 17851, 283246, 4579306, 75013112, 1240774907, 20677408080, 346638007264, 5839169781594, 98755770443674, 1675855850883818, 28520685212980872, 486589040917153648, 8319672542504635643
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + 6*x + 79*x^2 + 1158*x^3 + 17851*x^4 + 283246*x^5 +...
A(x)^(1/2) = 1 + 3*x + 35*x^2 + 474*x^3 + 6891*x^4 + 104360*x^5 +...+ A184554(n)*x^n +...
Given triangle T(n,k) = C(4n-k,k), which begins:
1;
3, 1;
15, 7, 1;
84, 45, 11, 1;
495, 286, 91, 15, 1;
3003, 1820, 680, 153, 19, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} T(n,k)*T(n,n-k):
a(2) = 79 = 15*1 + 7*7 + 1*15;
a(3) = 1158 = 84*1 + 45*11 + 11*45 + 1*84;
a(4) = 17851 = 495*1 + 286*15 + 91*91 + 15*286 + 1*495;
a(5) = 283246 = 3003*1 + 1820*19 + 680*153 + 153*680 + 19*1820 + 1*3003; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3*n + k, n - k]*Binomial[4*n - k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 05 2020 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(3*n+k, n-k)*binomial(4*n-k, k))}

Formula

Self-convolution of A184554.
From Vaclav Kotesovec, Oct 05 2020: (Start)
Recurrence: 4608*n*(2*n - 1)*(3*n - 2)*(3*n - 1)*(6*n - 5)*(6*n - 1)*(824272*n^5 - 5898332*n^4 + 16800434*n^3 - 23808019*n^2 + 16784457*n - 4709052)*a(n) = 8*(5425780331264*n^11 - 55105585740928*n^10 + 246537716167440*n^9 - 639474746248560*n^8 + 1064922708464172*n^7 - 1190925449132724*n^6 + 908552008954195*n^5 - 470324138422910*n^4 + 160844796771909*n^3 - 34319567939418*n^2 + 4065509174760*n - 199264665600)*a(n-1) + 7*(7*n - 12)*(7*n - 11)*(7*n - 10)*(7*n - 9)*(7*n - 8)*(7*n - 6)*(824272*n^5 - 1776972*n^4 + 1449826*n^3 - 553989*n^2 + 97753*n - 6240)*a(n-2).
a(n) ~ 7^(7*n + 3/2) / (sqrt(Pi*n) * 2^(6*n + 4) * 3^(6*n + 1/2)). (End)

A201635 Triangle formed by T(n,n) = (-1)^n*Sum_{j=0..n} C(-n,j), T(n,k) = Sum_{j=0..k} T(n-1,j) for k=0..n-1, and n>=0, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 2, 4, 6, 1, 3, 7, 13, 22, 1, 4, 11, 24, 46, 80, 1, 5, 16, 40, 86, 166, 296, 1, 6, 22, 62, 148, 314, 610, 1106, 1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 1, 8, 37, 128, 367, 920, 2083, 4352, 8518, 15792, 1, 9, 46, 174, 541, 1461, 3544, 7896
Offset: 0

Views

Author

Peter Luschny, Nov 14 2012

Keywords

Comments

Notation: If a sequence id is starred then the offset and/or some terms are different. Starred terms indicate the variance.
Row sums: [A026641 ] [1, 1, 4, 13, 46, 166, 610]
--
T(j+2, 2) [A000124*] [1*, 2 , 4, 7, 11, 16, 22]
T(j+3, 3) [A003600*] [1*, 2*, 6, 13, 24, 40, 62]
--
T(j , j) [A072547 ] [1, 0, 2, 6, 22, 80, 296]
T(j+1, j) [A026641 ] [1, 1, 4, 13, 46, 166, 610]
T(j+2, j) [A014300 ] [1, 2, 7, 24, 86, 314, 1163]
T(j+3, j) [A014301*] [1, 3, 11, 40, 148, 553, 2083]
T(j+4, j) [A172025 ] [1, 4, 16, 62, 239, 920, 3544]
T(j+5, j) [A172061 ] [1, 5, 22, 91, 367, 1461, 5776]
T(j+6, j) [A172062 ] [1, 6, 29, 128, 541, 2232, 9076]
T(j+7, j) [A172063 ] [1, 7, 37, 174, 771, 3300, 13820]
--
T(2j ,j) [Central ] [1, 1, 7, 40, 239, 1461, 9076]
T(2j+1,j) [A183160 ] [1, 2, 11, 62, 367, 2232, 13820]
T(2j+2,j) [ ] [1, 3, 16, 91, 541, 3300, 20476]
T(2j+3,j) [A199033*] [1, 4, 22, 128, 771, 4744, 29618]

Examples

			Triangle begins as:
[n]|k->
[0] 1
[1] 1, 0
[2] 1, 1,  2
[3] 1, 2,  4,  6
[4] 1, 3,  7, 13,  22
[5] 1, 4, 11, 24,  46,  80
[6] 1, 5, 16, 40,  86, 166, 296
[7] 1, 6, 22, 62, 148, 314, 610, 1106.
		

Programs

  • Maple
    A201635 := proc(n,k) option remember; local j;
    if n=k then (-1)^n*add(binomial(-n,j), j=0..n)
    else add(A201635(n-1,j), j=0..k) fi end:
    for n from 0 to 7 do seq(A(n,k), k=0..n) od;
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, (-1)^n*Sum[Binomial[-n, j], {j, 0, n}], Sum[T[n-1, j], {j, 0, k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2019 *)
  • PARI
    {T(n,k) = if(k==n, (-1)^n*sum(j=0,n, binomial(-n,j)), sum(j=0,k, T(n-1,j)))};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 27 2019
  • Sage
    @CachedFunction
    def A201635(n, k):
        if n==k: return (-1)^n*add(binomial(-n, j) for j in (0..n))
        return add(A201635(n-1, j) for j in (0..k))
    for n in (0..7) : [A201635(n, k) for k in (0..n)]
    
Previous Showing 11-19 of 19 results.