A371770
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 2, 10, 57, 338, 2057, 12741, 79914, 505954, 3226638, 20696685, 133382658, 862978221, 5601919325, 36467212610, 237974911737, 1556281907586, 10196788555859, 66921360130374, 439860632463462, 2895002186799453, 19077000179746293, 125849150650146714
Offset: 0
-
f:= proc(n) local k; add(binomial(3*n-3*k-1,n-3*k),k=0..n/3) end proc:
map(f, [$0..30]); # Robert Israel, Feb 28 2025
-
a(n) = sum(k=0, n\3, binomial(3*n-3*k-1, n-3*k));
A199033
Number of ways to place n non-attacking bishops on a 2 X 2n board.
Original entry on oeis.org
1, 4, 22, 128, 771, 4744, 29618, 186880, 1188679, 7608764, 48953224, 316283264, 2050706932, 13336273528, 86953633242, 568221290496, 3720529001823, 24403423540348, 160314652983158, 1054635453261568, 6946703172803003, 45809043607167328, 302395650703501688
Offset: 0
-
[(&+[Binomial(2*n-j+1,j)*Binomial(n+j+1,n-j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 19 2019
-
Table[Sum[Binomial[2n-j+1,j]*Binomial[n+j+1,n-j],{j,0,n}],{n,0,25}]
-
A199033(n):=sum(binomial(n+k+1, n-k)*binomial(2*n-k+1,k),k,0,n)$ makelist(A199033(n),n,0,22); /* Martin Ettl, Nov 15 2012 */
-
{a(n)=sum(k=0, n, binomial(n+k+1, n-k)*binomial(2*n-k+1, k))}
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G^2/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 14 2012
for(n=0,25,print1(a(n),", "))
-
[sum(binomial(2*n-j+1,j)*binomial(n+j+1,n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 19 2019
Offset changed to 0 and a(0)=1 added by
Paul D. Hanna, Nov 14 2012
A225006
Number of n X n 0..1 arrays with rows unimodal and columns nondecreasing.
Original entry on oeis.org
1, 2, 9, 50, 295, 1792, 11088, 69498, 439791, 2803658, 17978389, 115837592, 749321716, 4863369656, 31655226108, 206549749930, 1350638103791, 8848643946550, 58069093513635, 381650672631330, 2511733593767295, 16550500379912640, 109176697072162080
Offset: 0
Some solutions for n=3
..0..1..1....0..1..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..1....0..0..0....0..0..0....0..1..0....0..0..1
..1..1..1....0..1..1....1..1..1....0..0..1....0..1..0....1..1..1....0..1..1
From _Joerg Arndt_, May 10 2013: (Start)
The a(2) = 9 unimodal maps [1,2]->[1,2,3] are
01: [ 1 1 ]
02: [ 1 2 ]
03: [ 1 3 ]
04: [ 2 1 ]
05: [ 2 2 ]
06: [ 2 3 ]
07: [ 3 1 ]
08: [ 3 2 ]
09: [ 3 3 ]
(End)
Cf.
A088536 (unimodal maps [1..n]->[1..n]).
-
a[n_] := Sum[Binomial[2d+n-1, n-1], {d, 0, n}]; Array[a, 30] (* Jean-François Alcover, Feb 17 2016, after Max Alekseyev *)
-
{ a(n) = polcoeff( (1+x+O(x^(2*n+1)))^(-n-1)/(1-x), 2*n) }
A371742
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-k,n-2*k).
Original entry on oeis.org
1, 3, 16, 92, 551, 3380, 21065, 132771, 843944, 5399802, 34731776, 224361283, 1454557294, 9458829681, 61670895633, 403003997300, 2638776935215, 17308508054848, 113709379928689, 748069400432262, 4927608724973776, 32495826854732633, 214521754579553129
Offset: 0
A387085
a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(2*n+1,k).
Original entry on oeis.org
1, 0, 4, 8, 36, 120, 456, 1680, 6340, 23960, 91224, 348656, 1337896, 5149872, 19877904, 76907808, 298176516, 1158168792, 4505865144, 17555689008, 68490100536, 267518448912, 1046041377264, 4094231982048, 16039426479336, 62887835652720, 246761907761776, 968943740083040
Offset: 0
-
[&+[(-3)^(n-k) * Binomial(2*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
-
Table[Sum[(-3)^(n-k)*Binomial[2*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
-
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*n+1, k));
A171822
Triangle T(n,k) = binomial(2*n-k, k)*binomial(n+k, 2*k), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 30, 30, 1, 1, 70, 225, 70, 1, 1, 135, 980, 980, 135, 1, 1, 231, 3150, 7056, 3150, 231, 1, 1, 364, 8316, 34650, 34650, 8316, 364, 1, 1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1, 1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 30, 30, 1;
1, 70, 225, 70, 1;
1, 135, 980, 980, 135, 1;
1, 231, 3150, 7056, 3150, 231, 1;
1, 364, 8316, 34650, 34650, 8316, 364, 1;
1, 540, 19110, 132132, 245025, 132132, 19110, 540, 1;
1, 765, 39600, 420420, 1288287, 1288287, 420420, 39600, 765, 1;
1, 1045, 75735, 1166880, 5465460, 9018009, 5465460, 1166880, 75735, 1045, 1;
-
[Binomial(2*n-k, k)*Binomial(n+k, 2*k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 22 2021
-
Table[Binomial[2*n-k, k]*Binomial[n+k, 2*k], {n,0,10}, {k,0,n}]//Flatten
-
flatten([[binomial(2*n-k, k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 22 2021
A226706
G.f.: 1 / sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
Original entry on oeis.org
1, 2, 22, 256, 3174, 40862, 539376, 7247448, 98684230, 1357638124, 18831752122, 262974273200, 3692853486768, 52102851020154, 738102882420440, 10492839572260176, 149623214762194182, 2139329701502229300, 30661862088900836964, 440404155129948147776
Offset: 0
G.f.: A(x) = 1 + 2*x + 22*x^2 + 256*x^3 + 3174*x^4 + 40862*x^5 +...
A related series is G(x) = 1 + x*G(x), which begins
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
where A(x) = 1/sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5).
-
{a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/sqrt(1+12*x*G^4-16*x*G^5), n)}
for(n=0, 30, print1(a(n), ", "))
A184553
a(n) = Sum_{k=0..n} C(3n+k,n-k)*C(4n-k,k).
Original entry on oeis.org
1, 6, 79, 1158, 17851, 283246, 4579306, 75013112, 1240774907, 20677408080, 346638007264, 5839169781594, 98755770443674, 1675855850883818, 28520685212980872, 486589040917153648, 8319672542504635643
Offset: 0
G.f.: A(x) = 1 + 6*x + 79*x^2 + 1158*x^3 + 17851*x^4 + 283246*x^5 +...
A(x)^(1/2) = 1 + 3*x + 35*x^2 + 474*x^3 + 6891*x^4 + 104360*x^5 +...+ A184554(n)*x^n +...
Given triangle T(n,k) = C(4n-k,k), which begins:
1;
3, 1;
15, 7, 1;
84, 45, 11, 1;
495, 286, 91, 15, 1;
3003, 1820, 680, 153, 19, 1; ...
ILLUSTRATE formula a(n) = Sum_{k=0..n} T(n,k)*T(n,n-k):
a(2) = 79 = 15*1 + 7*7 + 1*15;
a(3) = 1158 = 84*1 + 45*11 + 11*45 + 1*84;
a(4) = 17851 = 495*1 + 286*15 + 91*91 + 15*286 + 1*495;
a(5) = 283246 = 3003*1 + 1820*19 + 680*153 + 153*680 + 19*1820 + 1*3003; ...
-
Table[Sum[Binomial[3*n + k, n - k]*Binomial[4*n - k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 05 2020 *)
-
{a(n)=sum(k=0, n, binomial(3*n+k, n-k)*binomial(4*n-k, k))}
A201635
Triangle formed by T(n,n) = (-1)^n*Sum_{j=0..n} C(-n,j), T(n,k) = Sum_{j=0..k} T(n-1,j) for k=0..n-1, and n>=0, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 1, 2, 4, 6, 1, 3, 7, 13, 22, 1, 4, 11, 24, 46, 80, 1, 5, 16, 40, 86, 166, 296, 1, 6, 22, 62, 148, 314, 610, 1106, 1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 1, 8, 37, 128, 367, 920, 2083, 4352, 8518, 15792, 1, 9, 46, 174, 541, 1461, 3544, 7896
Offset: 0
Triangle begins as:
[n]|k->
[0] 1
[1] 1, 0
[2] 1, 1, 2
[3] 1, 2, 4, 6
[4] 1, 3, 7, 13, 22
[5] 1, 4, 11, 24, 46, 80
[6] 1, 5, 16, 40, 86, 166, 296
[7] 1, 6, 22, 62, 148, 314, 610, 1106.
-
A201635 := proc(n,k) option remember; local j;
if n=k then (-1)^n*add(binomial(-n,j), j=0..n)
else add(A201635(n-1,j), j=0..k) fi end:
for n from 0 to 7 do seq(A(n,k), k=0..n) od;
-
T[n_, k_]:= T[n, k]= If[k==n, (-1)^n*Sum[Binomial[-n, j], {j, 0, n}], Sum[T[n-1, j], {j, 0, k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 27 2019 *)
-
{T(n,k) = if(k==n, (-1)^n*sum(j=0,n, binomial(-n,j)), sum(j=0,k, T(n-1,j)))};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 27 2019
-
@CachedFunction
def A201635(n, k):
if n==k: return (-1)^n*add(binomial(-n, j) for j in (0..n))
return add(A201635(n-1, j) for j in (0..k))
for n in (0..7) : [A201635(n, k) for k in (0..n)]
Comments