A007820
Stirling numbers of second kind S(2n,n).
Original entry on oeis.org
1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0
kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)
G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- Alois P. Heinz, Table of n, a(n) for n = 0..345 (terms n = 1..200 from Vincenzo Librandi)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- O-Y. Chan and D. V. Manna, Divisibility properties of Stirling numbers of the second kind [From _Jason Kimberley_, Sep 14 2009]
-
A007820 := proc(n) Stirling2(2*n,n) ; end proc:
seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
-
Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
-
makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
-
a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
-
{a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
-
from sympy.functions.combinatorial.numbers import stirling
def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
-
[stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
A285862
Number of permutations of [2n] with n ordered cycles such that equal-sized cycles are ordered with increasing least elements.
Original entry on oeis.org
1, 1, 19, 1005, 62601, 6061545, 868380535, 142349568361, 27564092244689, 6325532235438273, 1673378033771898675, 505141951803309946125, 170002056228253072537065, 63255335047795174479833625, 25805276337820748477042392695, 11427131417576257617280878155625
Offset: 0
a(1) = 1: (12).
a(2) = 19: (123)(4), (4)(123), (132)(4), (4)(132), (124)(3), (3)(124), (142)(3), (3)(142), (134)(2), (2)(134), (143)(2), (2)(143), (1)(234), (234)(1), (1)(243), (243)(1), (12)(34), (13)(24), (14)(23).
-
b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
(p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
[multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))
end:
a:= n-> coeff(b(2*n$2, 0), x, n):
seq(a(n), n=0..20);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];
a[n_] := Coefficient[b[2n, 2n, 0], x, n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 29 2018, from Maple *)
A242676
a(n) = |Stirling1(4*n,n)|.
Original entry on oeis.org
1, 6, 13068, 150917976, 5056995703824, 371384787345228000, 50779532534302850198976, 11616723683566425573507775872, 4123257155075936045020928754053376, 2146734309994687055429549444238169536000, 1569808063009967047226374755685187772671339520
Offset: 0
-
seq(abs(Stirling1(4*n,n)), n=0..20);
-
Table[Abs[StirlingS1[4*n, n]],{n,0,20}]
A187661
Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 20, 369, 10192, 379850, 17930697, 1027046517, 69216504576, 5363945384274, 469658243947850, 45827641349686636, 4928867833029014503, 579101340954599901152, 73778702335232336908585, 10129059530832922239925140
Offset: 0
-
seq(sum(binomial(n,k) * abs(combinat[stirling1](2*k, k)) * combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
-
Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
-
makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
-
a(n) = sum(k=0, n, binomial(n,k)*abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017
A237993
a(n) = |Stirling1(3*n,n)|.
Original entry on oeis.org
1, 2, 274, 118124, 105258076, 159721605680, 369012649234384, 1206647803780373360, 5304713715525445812976, 30180059720580991603896800, 215760462268683520394805979744, 1893448925578239663637174767335168, 20012008248418194052035539503977759232
Offset: 0
-
seq(abs(Stirling1(3*n,n)), n=0..20);
-
Table[Abs[StirlingS1[3*n, n]],{n,0,20}]
A348023
a(n) = [x^n] Product_{k=0..2*n-1} (x + (-1)^k * k).
Original entry on oeis.org
1, -1, -5, 51, 1009, -17765, -636385, 15875083, 828730833, -26734633497, -1837389309405, 72689703927555, 6202163408816881, -290609121018808813, -29631450442239587305, 1604436906627413556075, 190333687041180914380065, -11692931012450127257939505, -1582217617564533519968758645
Offset: 0
A383882
a(n) = [x^n] Product_{k=1..4*n} 1/(1 - k*x).
Original entry on oeis.org
1, 10, 750, 106470, 22350954, 6220194750, 2157580085700, 896587036640680, 434225240080346858, 240175986308550372366, 149377949042637543000150, 103192471874508023383125750, 78394850841083734162487127720, 64957213308036504429927388238088, 58298851680969051596827194829579744
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 4*n}], {x, 0, n}], {n, 0, 15}]
Table[StirlingS2[5*n, 4*n], {n, 0, 15}]
Table[SeriesCoefficient[1/(Pochhammer[1 - 1/x, 4*n]*x^(4*n)), {x, 0, n}], {n, 0, 15}]
A384129
Number of permutations of 3*n objects with exactly 2*n cycles.
Original entry on oeis.org
1, 3, 85, 4536, 357423, 37312275, 4853222764, 756111184500, 137272511800831, 28460103232088385, 6634460278534540725, 1717750737160208150400, 489078062391738506912340, 151874660255802127280374140, 51082995429153110239690350120, 18500755859447038660174079965500
Offset: 0
A384130
Number of permutations of 4*n objects with exactly 3*n cycles.
Original entry on oeis.org
1, 6, 322, 32670, 4899622, 973941900, 241276443496, 71603372991150, 24764667228756390, 9781650150525639540, 4344363139637533397580, 2143082171052546774398348, 1162585907585797437278546956, 687872810620417599693839111880, 440840269604491448260396623711300
Offset: 0
-
[&+[Abs(StirlingFirst(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
-
a[n_]:=Abs[StirlingS1[4 n,3 n]] Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 21 2025 *)
-
a(n) = abs(stirling(4*n, 3*n, 1));
A154415
The middle Stirling numbers of first kind: a(n) = Stirling1(n, floor(n/2)).
Original entry on oeis.org
1, 0, -1, 2, 11, -50, -225, 1624, 6769, -67284, -269325, 3416930, 13339535, -206070150, -790943153, 14409322928, 54631129553, -1146901283528, -4308105301929, 102417740732658, 381922055502195, -10142299865511450
Offset: 0
-
Table[StirlingS1[n, Floor[n/2]], {n, 0, 30}]
-
a(n) = stirling(n, n\2, 1); \\ Michel Marcus, Sep 16 2016
Comments