cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A007820 Stirling numbers of second kind S(2n,n).

Original entry on oeis.org

1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0

Views

Author

kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)

Keywords

Comments

Chan and Manna prove that a(n) is odd if and only if n is in A003714. - Jason Kimberley, Sep 14 2009
The number of ways to partition a set of 2*n elements into n disjoint subsets. - Vladimir Reshetnikov, Oct 10 2016
Conjecture: a(2*n+1) is divisible by (2*n + 1)^2. - Peter Bala, Mar 30 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

Crossrefs

Programs

  • Maple
    A007820 := proc(n) Stirling2(2*n,n) ; end proc:
    seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
  • Mathematica
    Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
  • Maxima
    makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
    
  • PARI
    a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling
    def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
  • Sage
    [stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = A048993(2n,n). - R. J. Mathar, Mar 15 2011
Asymptotic: a(n) ~ (4*n/(e*z*(2-z)))^n/sqrt(2*Pi*n*(z-1)), where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2. - Vaclav Kotesovec, May 30 2011
a(n) = 1/n! * Sum_{k = 0..n} binomial(n,k)*(-1)^k*(n-k)^(2*n). - Emanuele Munarini, Jul 01 2011
a(n) = [x^n] 1 / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Oct 17 2012
O.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n. - Paul D. Hanna, Oct 17 2012
G.f.: Sum_{n > 0} (a(n)*n!/(2*n)!)*x^n = x*B'(x)/B(x)-1, where B(x) satisfies B(x)^2 = x*(exp(B(x))-1). - Vladimir Kruchinin, Mar 13 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*n^j*binomial(2*n,j)*stirling2(2*n-j,n). - Vladimir Kruchinin, Jun 14 2013

Extensions

Typo in Mathematica program fixed by Vincenzo Librandi, May 04 2013
a(0)=1 prepended by Alois P. Heinz, Feb 01 2018

A285862 Number of permutations of [2n] with n ordered cycles such that equal-sized cycles are ordered with increasing least elements.

Original entry on oeis.org

1, 1, 19, 1005, 62601, 6061545, 868380535, 142349568361, 27564092244689, 6325532235438273, 1673378033771898675, 505141951803309946125, 170002056228253072537065, 63255335047795174479833625, 25805276337820748477042392695, 11427131417576257617280878155625
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2017

Keywords

Examples

			a(1) = 1: (12).
a(2) = 19: (123)(4), (4)(123), (132)(4), (4)(132), (124)(3), (3)(124), (142)(3), (3)(142), (134)(2), (2)(134), (143)(2), (2)(143), (1)(234), (234)(1), (1)(243), (243)(1),  (12)(34), (13)(24), (14)(23).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
          (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
          [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))
        end:
    a:= n-> coeff(b(2*n$2, 0), x, n):
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];
    a[n_] := Coefficient[b[2n, 2n, 0], x, n];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 29 2018, from Maple *)

Formula

a(n) = A285849(2n,n).

A242676 a(n) = |Stirling1(4*n,n)|.

Original entry on oeis.org

1, 6, 13068, 150917976, 5056995703824, 371384787345228000, 50779532534302850198976, 11616723683566425573507775872, 4123257155075936045020928754053376, 2146734309994687055429549444238169536000, 1569808063009967047226374755685187772671339520
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2014

Keywords

Comments

Generally, for p>=2 is Abs(StirlingS1(p*n,n)) asymptotic to n^((p-1)*n) * c^(p*n) * p^((2*p-1)*n) / (sqrt(2*Pi*p*(c-1)*n) * exp((p-1)*n) * (c*p-1)^((p-1)*n)), where c = -LambertW(-1,-exp(-1/p)/p).

Crossrefs

Programs

  • Maple
    seq(abs(Stirling1(4*n,n)), n=0..20);
  • Mathematica
    Table[Abs[StirlingS1[4*n, n]],{n,0,20}]

Formula

a(n) ~ n^(3*n) * c^(4*n) * 2^(14*n-1) / (sqrt(2*Pi*(c-1)*n) * exp(3*n) * (4*c-1)^(3*n)), where c = -LambertW(-1,-exp(-1/4)/4) = 2.58666298226305388118285...
From Seiichi Manyama, May 20 2025: (Start)
a(n) = A132393(4*n,n).
a(n) = (4*n)! * [x^(4*n)] (-log(1 - x))^n / n!. (End)

A187661 Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 20, 369, 10192, 379850, 17930697, 1027046517, 69216504576, 5363945384274, 469658243947850, 45827641349686636, 4928867833029014503, 579101340954599901152, 73778702335232336908585, 10129059530832922239925140
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n,k) * abs(combinat[stirling1](2*k, k)) * combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * s(2*k,k) * S(2*n-2*k,n-k).
a(n) ~ m * n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.75643120862616967698..., and m = Sum_{j>=0} StirlingS2(2*j,j) * (2*c-1)^j / (j! * 2^(3*j) * c^(2*j)) = 1.170003674502655133465266152119563086693466... . - Vaclav Kotesovec, May 22 2014

A237993 a(n) = |Stirling1(3*n,n)|.

Original entry on oeis.org

1, 2, 274, 118124, 105258076, 159721605680, 369012649234384, 1206647803780373360, 5304713715525445812976, 30180059720580991603896800, 215760462268683520394805979744, 1893448925578239663637174767335168, 20012008248418194052035539503977759232
Offset: 0

Views

Author

Vaclav Kotesovec, May 20 2014

Keywords

Crossrefs

Programs

  • Maple
    seq(abs(Stirling1(3*n,n)), n=0..20);
  • Mathematica
    Table[Abs[StirlingS1[3*n, n]],{n,0,20}]

Formula

a(n) ~ n^(2*n) * c^(3*n) * 3^(5*n) / (sqrt(6*Pi*(c-1)*n) * exp(2*n) * (3*c-1)^(2*n)), where c = -LambertW(-1,-exp(-1/3)/3) = 2.237147027773716818...
From Seiichi Manyama, May 20 2025: (Start)
a(n) = A132393(3*n,n).
a(n) = (3*n)! * [x^(3*n)] (-log(1 - x))^n / n!. (End)

A348023 a(n) = [x^n] Product_{k=0..2*n-1} (x + (-1)^k * k).

Original entry on oeis.org

1, -1, -5, 51, 1009, -17765, -636385, 15875083, 828730833, -26734633497, -1837389309405, 72689703927555, 6202163408816881, -290609121018808813, -29631450442239587305, 1604436906627413556075, 190333687041180914380065, -11692931012450127257939505, -1582217617564533519968758645
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoef(prod(k=0, 2*n-1, x+(-1)^k*k), n);

Formula

a(n) = A047991(2*n-1,n) for n>0.

A383882 a(n) = [x^n] Product_{k=1..4*n} 1/(1 - k*x).

Original entry on oeis.org

1, 10, 750, 106470, 22350954, 6220194750, 2157580085700, 896587036640680, 434225240080346858, 240175986308550372366, 149377949042637543000150, 103192471874508023383125750, 78394850841083734162487127720, 64957213308036504429927388238088, 58298851680969051596827194829579744
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2025

Keywords

Comments

In general, for m>=1, Stirling2((m+1)*n, m*n) ~ (-1)^(m*n) * (m+1)^((m+1)*n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + w(m))) * exp(n) * m^(m*n + 1/2) * w(m)^(m*n) * (1 + 1/m + w(m))^n), where w(m) = LambertW(-(1 + 1/m)/exp(1 + 1/m)).

Crossrefs

Cf. A007820 (m=1), A348084 (m=2), A383881 (m=3).
Cf. A217913.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 4*n}], {x, 0, n}], {n, 0, 15}]
    Table[StirlingS2[5*n, 4*n], {n, 0, 15}]
    Table[SeriesCoefficient[1/(Pochhammer[1 - 1/x, 4*n]*x^(4*n)), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = Stirling2(5*n,4*n).
a(n) ~ 5^(5*n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + w)) * exp(n) * 4^(4*n + 1/2) * w^(4*n) * (5/4 + w)^n), where w = LambertW(-5/(4*exp(5/4))).

A384129 Number of permutations of 3*n objects with exactly 2*n cycles.

Original entry on oeis.org

1, 3, 85, 4536, 357423, 37312275, 4853222764, 756111184500, 137272511800831, 28460103232088385, 6634460278534540725, 1717750737160208150400, 489078062391738506912340, 151874660255802127280374140, 51082995429153110239690350120, 18500755859447038660174079965500
Offset: 0

Views

Author

Seiichi Manyama, May 20 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = abs(stirling(3*n, 2*n, 1));

Formula

a(n) = A132393(3*n,2*n) = |Stirling1(3*n,2*n)|.
a(n) = (3*n)! * [x^(3*n)] log(1 - x)^(2*n) / (2*n)!.
a(n) ~ 3^(4*n - 1/2) * w^(3*n) * n^(n - 1/2) / (sqrt(Pi*(w-1)) * 2^(2*n + 1/2) * exp(n) * (3*w-2)^n), where w = -LambertW(-1, -2*exp(-2/3)/3) = 1.4293552275170056487... - Vaclav Kotesovec, May 23 2025

A384130 Number of permutations of 4*n objects with exactly 3*n cycles.

Original entry on oeis.org

1, 6, 322, 32670, 4899622, 973941900, 241276443496, 71603372991150, 24764667228756390, 9781650150525639540, 4344363139637533397580, 2143082171052546774398348, 1162585907585797437278546956, 687872810620417599693839111880, 440840269604491448260396623711300
Offset: 0

Views

Author

Seiichi Manyama, May 20 2025

Keywords

Comments

In general, for m>=1, abs(Stirling1((m+1)*n, m*n)) ~ (m+1)^((m+2)*n - 1/2) * w(m)^((m+1)*n) * n^(n - 1/2) / (sqrt(2*Pi*(w(m)-1)) * exp(n) * m^(m*n) * ((m+1)*w(m) - m)^n), where w(m) = -LambertW(-1, -m*exp(-m/(m+1))/(m+1)). - Vaclav Kotesovec, May 23 2025

Crossrefs

Programs

  • Magma
    [&+[Abs(StirlingFirst(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
  • Mathematica
    a[n_]:=Abs[StirlingS1[4 n,3 n]] Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 21 2025 *)
  • PARI
    a(n) = abs(stirling(4*n, 3*n, 1));
    

Formula

a(n) = A132393(4*n,3*n) = |Stirling1(4*n,3*n)|.
a(n) = (4*n)! * [x^(4*n)] (-log(1 - x))^(3*n) / (3*n)!.
a(n) ~ 2^(10*n - 3/2) * n^(n - 1/2) * w^(4*n) / (sqrt(Pi*(w-1)) * 3^(3*n) * exp(n) * (4*w-3)^n), where w = -LambertW(-1, -3*exp(-3/4)/4) = 1.3002007416590685881... - Vaclav Kotesovec, May 23 2025

A154415 The middle Stirling numbers of first kind: a(n) = Stirling1(n, floor(n/2)).

Original entry on oeis.org

1, 0, -1, 2, 11, -50, -225, 1624, 6769, -67284, -269325, 3416930, 13339535, -206070150, -790943153, 14409322928, 54631129553, -1146901283528, -4308105301929, 102417740732658, 381922055502195, -10142299865511450
Offset: 0

Views

Author

Roger L. Bagula, Jan 09 2009

Keywords

Comments

The signless central Stirling numbers of the first kind Stirling1(2*n, n) are A187646.

Crossrefs

Programs

  • Mathematica
    Table[StirlingS1[n, Floor[n/2]], {n, 0, 30}]
  • PARI
    a(n) = stirling(n, n\2, 1); \\ Michel Marcus, Sep 16 2016

Extensions

Name clarified by Peter Luschny, Jan 06 2020
Previous Showing 11-20 of 22 results. Next