A278073
Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 3.
Original entry on oeis.org
1, 0, 1, 0, 1, 20, 0, 1, 168, 1680, 0, 1, 1364, 55440, 369600, 0, 1, 10920, 1561560, 33633600, 168168000, 0, 1, 87380, 42771456, 2385102720, 34306272000, 137225088000, 0, 1, 699048, 1160164320, 158411809920, 5105916816000, 54752810112000, 182509367040000
Offset: 0
Triangle begins:
[1]
[0, 1]
[0, 1, 20]
[0, 1, 168, 1680]
[0, 1, 1364, 55440, 369600]
[0, 1, 10920, 1561560, 33633600, 168168000]
-
P := proc(m, n) option remember; if n = 0 then 1 else
add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(3,n), x) od;
# Alternatively:
A278073_row := proc(n)
1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1));
expand(series(%,x,3*n+1)); (3*n)!*coeff(%,x,3*n);
PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 6 do A278073_row(n) od;
-
With[{m = 3}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 21, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
-
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(30)
@cached_function
def P(m, n):
if n == 0: return R(1)
return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
def A278073_row(n): return list(P(3, n))
for n in (0..6): print(A278073_row(n)) # Peter Luschny, Mar 24 2020
A210657
a(0)=1; thereafter a(n) = -2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, -2, 22, -602, 30742, -2523002, 303692662, -50402079002, 11030684333782, -3077986048956602, 1066578948824962102, -449342758735568563802, 226182806795367665865622, -134065091768709178087428602, 92423044260377387363207812342, -73323347841467639992211297199002
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- Matthieu Josuat-Vergès and Jang Soo Kim, Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity, arXiv:1101.5608 [math.CO], 2011.
- Zhi-Hong Sun, On the further properties of U_n, arXiv:1203.5977 [math.NT], 2012.
-
A210657:=proc(n) option remember;
if n=0 then 1
else -2*add(binomial(2*n,2*k)*procname(n-k),k=1..floor(n)); fi;
end;
[seq(f(n),n=0..20)];
# Second program:
a := (n) -> 2*36^n*(Zeta(0,-n*2,1/6)-Zeta(0,-n*2,2/3)):
seq(a(n), n=0..15); # Peter Luschny, Mar 11 2015
-
nmax=20; Table[(CoefficientList[Series[1/(2*Cosh[x]-1), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
Table[9^n EulerE[2 n, 1/3], {n, 0, 20}] (* Vladimir Reshetnikov, Jun 05 2016 *)
-
a(n)=polcoeff(sum(m=0, n, (2*m)!*(-x)^m/prod(k=1, m, 1-k^2*x +x*O(x^n)) ), n)
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Sep 17 2012
A278074
Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.
Original entry on oeis.org
1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 1, 70]
[0, 1, 990, 34650]
[0, 1, 16510, 2702700, 63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
-
P := proc(m,n) option remember; if n = 0 then 1 else
add(binomial(m*n,m*k)* P(m,n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4,n), x) od;
# Alternatively:
A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%,x,4*n+1));
(4*n)!*coeff(%,x,4*n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 5 do A278074_row(n) od;
-
With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
-
# uses [P from A278073]
def A278074_row(n): return list(P(4, n))
for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020
A210672
a(0)=1; thereafter a(n) = 2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
Original entry on oeis.org
1, 2, 26, 842, 50906, 4946282, 704888186, 138502957322, 35887046307866, 11855682722913962, 4863821092813045946, 2425978759725443056202, 1445750991051368583278426, 1014551931766896667943384042, 828063237870027116855857421306, 777768202388460616924079724057482
Offset: 0
-
f:=proc(n,k) option remember; local i;
if n=0 then 1
else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end;
g:=k->[seq(f(n,k),n=0..40)];
g(2);
-
nmax=20; Table[(CoefficientList[Series[1/(3-2*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
A002446
a(n) = 2^(2*n+1) - 2.
Original entry on oeis.org
0, 6, 30, 126, 510, 2046, 8190, 32766, 131070, 524286, 2097150, 8388606, 33554430, 134217726, 536870910, 2147483646, 8589934590, 34359738366, 137438953470, 549755813886, 2199023255550, 8796093022206, 35184372088830
Offset: 0
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
A diagonal of the triangle in
A241171.
-
List([0..30], n-> 2*(4^n - 1)) # G. C. Greubel, Jul 04 2019
-
[2^(2*n+1) - 2: n in [0..30]]; // Vincenzo Librandi, Jun 01 2011
-
A002446:=6*z/((4*z-1)*(z-1)); # [Generating function. Simon Plouffe in his 1992 dissertation.]
-
f[n_] := Det[{{1, 1}, {1, 4}}^(n - 1) {{1, 2}, {1, 2}}]; Array[f, 30] (* Robert G. Wilson v, Jul 13 2011 *)
2^(2*Range[0,30]+1)-2 (* or *) LinearRecurrence[{5,-4},{0,6},30] (* Harvey P. Dale, Sep 01 2016 *)
-
a(n) = 2*(4^n - 1); \\ G. C. Greubel, Jul 04 2019
-
[2*(4^n -1) for n in (0..30)] # G. C. Greubel, Jul 04 2019
A100872
a(n) = (1/sqrt(5)) * Sum_{k>0} k^(2n)/phi^(2k) where phi = (1+sqrt(5))/2 = A001622.
Original entry on oeis.org
1, 13, 421, 25453, 2473141, 352444093, 69251478661, 17943523153933, 5927841361456981, 2431910546406522973, 1212989379862721528101, 722875495525684291639213, 507275965883448333971692021, 414031618935013558427928710653, 388884101194230308462039862028741
Offset: 1
-
FullSimplify[Table[PolyLog[-2k, GoldenRatio^(-2)]/Sqrt[5], {k, 1, 10}]] (* Vladimir Reshetnikov, Feb 16 2011 *)
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; a[n] := Sum[2^(k-1) T[n, k], {k, 1, n}]; Array[a, 15] (* Jean-François Alcover, Jul 03 2019 *)
-
a(n)=round(1/sqrt(5)*sum(k=1,500,k^(2*n)/((1+sqrt(5))/2)^(2*k)))
A255926
Expansion of exp( Sum_{n >= 1} A210676(n)*x^n/n ).
Original entry on oeis.org
1, -3, 30, -802, 45414, -4508190, 692197470, -151610017950, 44827810930305, -17193060505570335, 8298004578522898140, -4920774627129981351120, 3516683319021255757053900, -2980761698101283167670391780, 2956463734237276273792194346560, -3392220222832838757465019626175680
Offset: 0
-
A210676 := proc (n) option remember; if n = 0 then 1 else -3*add(binomial(2*n, 2*k)*A210676(k), k = 0 .. n-1) end if; end proc:
A255926 := proc (n) option remember; if n = 0 then 1 else add(A210676(n-k)*A255926(k), k = 0 .. n-1)/n end if; end proc:
seq(A255926(n), n = 0 .. 16);
A255928
Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).
Original entry on oeis.org
1, 1, 4, 44, 1025, 41693, 2617128, 234091692, 28251572652, 4421489003700, 870650503128708, 210629395976568828, 61405707768736724472, 21231253444779700476672, 8589776776743377081599500, 4020181599664131540547091076, 2155088041310451318611119556661
Offset: 0
-
A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:
A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:
seq(A255928(n), n = 0 .. 16);
A255929
Expansion of exp( Sum_{n >= 1} A210672(n)*x^n/n ).
Original entry on oeis.org
1, 2, 15, 308, 13399, 1019106, 119698377, 20039968920, 4527610159068, 1326616296092984, 489092182592254708, 221537815033845709776, 120928125204565597029220, 78286897353506845258973144, 59305342759674536454338570652, 51970719684035315747385128783808
Offset: 0
-
#A255929
A210672 := proc (n) option remember; if n = 0 then 1 else 2*add(binomial(2*n, 2*k)*A210672(k), k = 0 .. n-1) end if; end proc:
A255929 := proc (n) option remember; if n = 0 then 1 else add(A210672(n-k)*A255929(k), k = 0 .. n-1)/n end if; end proc:
seq(A255929(n), n = 0 .. 15);
A255930
Expansion of exp( Sum_{n >= 1} A210674(n)*x^n/n ).
Original entry on oeis.org
1, 3, 33, 991, 63060, 7018860, 1206748720, 295775068680, 97835325011235, 41970842737399345, 22655642596496388759, 15025240474194493147857, 12008582230377080862401692, 11382727559611560650861409564, 12625404970864692720119281536900, 16199644066580777034289339157904220
Offset: 0
-
#A255930
A210674 := proc (n) option remember; if n = 0 then 1 else 3*add(binomial(2*n, 2*k)*A210674(k), k = 0 .. n-1) end if; end proc:
A255930 := proc (n) option remember; if n = 0 then 1 else add(A210674(n-k)*A255930(k), k = 0 .. n-1)/n end if; end proc:
seq(A255930(n), n = 0 .. 15);
Comments