A052442
Number of simple unlabeled n-node graphs of connectivity 1.
Original entry on oeis.org
0, 1, 1, 3, 11, 56, 385, 3994, 67014, 1973029, 105731474, 10439496931, 1902968718515, 641662974453892, 401490336727861176, 467924684115578671326, 1019752390010650509117288, 4171131179469162937375841939, 32134378048921787829834095722663, 467778894124037894839737804918978194
Offset: 1
-
A001349 = Cases[Import["https://oeis.org/A001349/b001349.txt", "Table"], {, }][[All, 2]];
A002218 = Cases[Import["https://oeis.org/A002218/b002218.txt", "Table"], {, }][[All, 2]];
a[1] = 0; a[2] = 1;
a[n_] := A001349[[n+1]] - A002218[[n]];
Array[a, 26] (* Jean-François Alcover, Sep 10 2019, after Andrew Howroyd *)
A327236
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0
Triangle begins:
1
1
1 1
1 1 1 1
2 2 3 3 1
4 5 10 8 5 1 1
Spanning edge-connectivity is
A263296.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A052445
Number of simple unlabeled n-node graphs of connectivity 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 21, 345, 13429, 1109105, 162318088, 39460518399
Offset: 1
The a(6) = 3 exactly-4-connected 6-node graphs are the complete graph K_6 with 1, 2, or 3 non-adjacent edges removed.
A327101
BII-numbers of 2-cut-connected set-systems (cut-connectivity >= 2).
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1
The sequence of all 2-cut-connected set-systems together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Positions of numbers >= 2 in
A326786.
2-cut-connected graphs are counted by
A013922, if we assume
A013922(2) = 0.
2-cut-connected integer partitions are counted by
A322387.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
BII-numbers for non-spanning edge-connectivity >= 2 are
A327102.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
The labeled cut-connectivity triangle is
A327125, with unlabeled version
A327127.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]
A086216
Number of 4-connected unlabeled n-node graphs.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 25, 384, 14480, 1211735, 184649399, 47952362294
Offset: 1
There are 4 different 4-connected graphs on 6 vertices. - _Dylan Thurston_, Jun 18 2009
See
A052445 for exactly-4-connected graphs.
See
A086217 for 5-connected graphs.
See
A259862 for further information.
A327112
Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.
Original entry on oeis.org
0, 0, 4, 72, 29856
Offset: 0
Non-isomorphic representatives of the a(3) = 72 set-systems:
{{123}}
{{3}{123}}
{{23}{123}}
{{2}{3}{123}}
{{1}{23}{123}}
{{3}{23}{123}}
{{12}{13}{23}}
{{13}{23}{123}}
{{1}{2}{3}{123}}
{{1}{3}{23}{123}}
{{2}{3}{23}{123}}
{{3}{12}{13}{23}}
{{2}{13}{23}{123}}
{{3}{13}{23}{123}}
{{12}{13}{23}{123}}
{{1}{2}{3}{23}{123}}
{{2}{3}{12}{13}{23}}
{{1}{2}{13}{23}{123}}
{{2}{3}{13}{23}{123}}
{{3}{12}{13}{23}{123}}
{{1}{2}{3}{12}{13}{23}}
{{1}{2}{3}{13}{23}{123}}
{{2}{3}{12}{13}{23}{123}}
{{1}{2}{3}{12}{13}{23}{123}}
Covering 2-cut-connected graphs are
A013922, if we assume
A013922(2) = 1.
Covering 2-cut-connected antichains (blobs) are
A275307, if we assume
A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are
A327113.
2-vertex-connected integer partitions are
A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are
A327101.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]
A327127
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices where k is the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 2, 0, 1, 13, 11, 7, 2, 0, 1
Offset: 0
Triangle begins:
1
0 1
1 0 1
2 1 0 1
5 3 2 0 1
13 11 7 2 0 1
A more standard version (zeros removed) is
A259862.
A327113
Number of set-systems covering n vertices with cut-connectivity 2.
Original entry on oeis.org
0, 0, 4, 0, 4752
Offset: 0
The a(2) = 4 set-systems:
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
Covering graphs with cut-connectivity >= 2 are
A013922, if we assume
A013922(2) = 1.
Covering antichains (blobs) with cut-connectivity >= 2 are
A275307, if we assume
A275307(1) = 0.
2-vertex-connected integer partitions are
A322387.
Connected covering set-systems are
A323818.
Covering set-systems with cut-connectivity >= 2 are
A327112.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
BII-numbers of set-systems with cut-connectivity 2 are
A327082.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]==2&]],{n,0,3}]
A327197
Number of set-systems covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 1, 0, 24, 1984
Offset: 0
The a(3) = 24 set-systems:
{12}{13} {1}{12}{13} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{12}{23} {1}{12}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{13}{23} {1}{13}{23} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{2}{12}{13} {1}{3}{12}{13}
{2}{12}{23} {1}{3}{12}{23}
{2}{13}{23} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{3}{13}{23} {2}{3}{13}{23}
The BII-numbers of these set-systems are
A327098.
The same for cut-connectivity 2 is
A327113.
The non-covering version is
A327128.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
A327198
Number of labeled simple graphs covering n vertices with vertex-connectivity 2.
Original entry on oeis.org
0, 0, 0, 1, 9, 212, 9600, 789792, 114812264, 29547629568, 13644009626400, 11489505388892800, 17918588321874717312, 52482523149603539181312, 292311315623259148521270784, 3129388799344153886272170009600, 64965507855114369076680860799267840
Offset: 0
Cf.
A005644,
A013922,
A052442,
A259862,
A326786,
A327082,
A327101,
A327112,
A327113,
A327126,
A327227.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==2&]],{n,0,5}]
Comments