A003480
a(0) = 1, a(1) = 2, for n > 1, a(n) = 4*a(n-1) - 2*a(n-2).
Original entry on oeis.org
1, 2, 7, 24, 82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, 5170048, 17651648, 60266496, 205762688, 702517760, 2398545664, 8189147136, 27959497216, 95459694592, 325919783936, 1112759746560, 3799199418368, 12971278180352, 44286713884672, 151204299177984
Offset: 0
- G. Castiglione and A. Restivo, L-convex polyominoes: a survey, Chapter 2 of K. G. Subranian et al., eds., Formal Models, Languages and Applications, World Scientific, 2015.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- Daniela Battaglino, Jean-Marc Fédou, Simone Rinaldi, and Samanta Socci, The number of k-parallelogram polyominoes, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1143-1154.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Adrien Boussicault, Simone Rinaldi, and Samanta Socci, The number of directed k-convex polyominoes, arXiv preprint arXiv:1501.00872 [math.CO], 2015; Discrete Math., 343 (2020), #111731, 22 pages. See t_n.
- Steve Butler, Jeongyoon Choi, Kimyung Kim, and Kyuhyeok Seo, Enumerating multiplex juggling patterns, arXiv:1702.05808 [math.CO], 2017.
- Peter J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Giuseppa Castiglione, Andrea Frosini, Emanuele Munarini, Antonio Restivo, and Simone Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Yumin Cho, Jaehyun Kim, Jang Soo Kim, and Nakyung Lee, Enumeration of multiplex juggling card sequences using generalized q-derivatives, arXiv:2402.09903 [math.CO], 2024. See p. 6.
- Ana Djurdjevac, Vesa Kaarnioja, Claudia Schillings, and André-Alexander Zepernick, Uncertainty quantification for stationary and time-dependent PDEs subject to Gevrey regular random domain deformations, arXiv:2502.12345 [math.NA], 2025. See p. 34.
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- Enrica Duchi, Simone Rinaldi, and Gilles Schaeffer, The number of Z-convex polyominoes, arXiv:math/0602124 [math.CO], 2006.
- Andrea Frosini and Simone Rinaldi, An object grammar for the class of L-convex polyominoes, PU.M.A. Vol. 17 (2006), No. 1-2, pp. 97-110.
- Taras Goy and Mark Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence F_n-1, Online J. Anal. Comb. (2025) Vol. 19, Paper 1, 1-26. See pp. 12, 18
- Yu-hong. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (12).
- Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 418
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for sequences related to poker
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
-
a003480 n = a003480_list !! n
a003480_list = 1 : 2 : 7 : (tail $ zipWith (-)
(tail $ map (* 4) a003480_list) (map (* 2) a003480_list))
-- Reinhard Zumkeller, Jan 16 2012, Oct 03 2011
-
INVERT([seq(n+1,n=1..20)]); # Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
-
a[0]=1; a[1]=2; a[2]=7; a[n_]:=a[n]=4*a[n-1] - 2*a[n-2]; Table[a[n],{n,0,24}] (* Jean-François Alcover, Mar 22 2011 *)
Join[{1},LinearRecurrence[{4,-2},{2,7},40]] (* Harvey P. Dale, Oct 23 2011 *)
-
a(n)=polcoeff((1-x)^2/(1-4*x+2*x^2)+x*O(x^n),n)
-
a(n)=local(x); if(n<1,n==0,x=(2+quadgen(8))^n; imag(x)+real(x)/2)
A261781
Number T(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 4, 16, 13, 0, 8, 66, 132, 75, 0, 16, 248, 924, 1232, 541, 0, 32, 892, 5546, 13064, 13060, 4683, 0, 64, 3136, 30720, 114032, 195020, 155928, 47293, 0, 128, 10888, 162396, 893490, 2327960, 3116220, 2075948, 545835
Offset: 0
A(3,2) = 16: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 3;
0, 4, 16, 13;
0, 8, 66, 132, 75;
0, 16, 248, 924, 1232, 541;
0, 32, 892, 5546, 13064, 13060, 4683;
0, 64, 3136, 30720, 114032, 195020, 155928, 47293;
...
Columns k=0..10 give
A000007,
A131577,
A293579,
A293580,
A293581,
A293582,
A293583,
A293584,
A293585,
A293586,
A293587.
-
A:= proc(n, k) option remember; `if`(n=0, 1,
add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = If[n==0, 1,
Sum[A[n-j, k]*Binomial[j+k-1, k-1], {j, 1, n}]];
T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
A261718
Number A(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 18, 5, 0, 1, 5, 26, 55, 50, 7, 0, 1, 6, 40, 124, 216, 118, 11, 0, 1, 7, 57, 235, 631, 729, 301, 15, 0, 1, 8, 77, 398, 1470, 2780, 2621, 684, 22, 0, 1, 9, 100, 623, 2955, 8001, 12954, 8535, 1621, 30, 0
Offset: 0
A(3,2) = 18: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 2, 7, 15, 26, 40, 57, 77, ...
0, 3, 18, 55, 124, 235, 398, 623, ...
0, 5, 50, 216, 631, 1470, 2955, 5355, ...
0, 7, 118, 729, 2780, 8001, 19158, 40299, ...
0, 11, 301, 2621, 12954, 45865, 130453, 317905, ...
0, 15, 684, 8535, 55196, 241870, 820554, 2323483, ...
Columns k=0-10 give:
A000007,
A000041,
A074141,
A261737,
A261738,
A261739,
A261740,
A261741,
A261742,
A261743,
A261744.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
A:= (n, k)-> b(n, n, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A261835
Number A(n,k) of compositions of n into distinct parts where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 3, 0, 1, 4, 6, 16, 3, 0, 1, 5, 10, 46, 21, 5, 0, 1, 6, 15, 100, 75, 50, 11, 0, 1, 7, 21, 185, 195, 231, 205, 13, 0, 1, 8, 28, 308, 420, 736, 1414, 292, 19, 0, 1, 9, 36, 476, 798, 1876, 6032, 2376, 587, 27, 0
Offset: 0
A(3,2) = 16: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a2aa, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1b2bb.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 1, 3, 6, 10, 15, 21, 28, ...
0, 3, 16, 46, 100, 185, 308, 476, ...
0, 3, 21, 75, 195, 420, 798, 1386, ...
0, 5, 50, 231, 736, 1876, 4116, 8106, ...
0, 11, 205, 1414, 6032, 19320, 51114, 117936, ...
0, 13, 292, 2376, 11712, 42610, 126288, 322764, ...
Columns k=0-10 give:
A000007,
A032020,
A261840,
A261841,
A261842,
A261843,
A261844,
A261845,
A261846,
A261847,
A261848.
-
b:= proc(n, i, p, k) option remember;
`if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))
end:
A:= (n, k)-> b(n$2, 0, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2 < n, 0, If[n == 0, p!, b[n, i-1, p, k] + If[i>n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; A[n_, k_] := b[n, n, 0, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 16 2017, translated from Maple *)
A145839
Number of 3-compositions of n.
Original entry on oeis.org
1, 3, 15, 73, 354, 1716, 8318, 40320, 195444, 947380, 4592256, 22260144, 107902088, 523036176, 2535324816, 12289536016, 59571339552, 288761470848, 1399719859808, 6784893012864, 32888561860032, 159421452802624, 772767131681280, 3745851196992000
Offset: 0
Simone Rinaldi (rinaldi(AT)unisi.it), Oct 21 2008
- G. Louchard, Matrix compositions: a probabilistic approach, Proceedings of GASCom and Bijective Combinatorics 2008, Bibbiena, Italy, pp. 159-170.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 8.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Emanuele Munarini, Maddalena Poneti, and Simone Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8.
- Index entries for linear recurrences with constant coefficients, signature (6,-6,2).
-
I:=[3,15,73]; [1] cat [n le 3 select I[n] else 6*Self(n-1) - 6*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Mar 07 2021
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(j+2, 2), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 01 2015
-
Table[Sum[Binomial[n+3*k-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Dec 31 2013 *)
a[n_]:= a[n]= If[n==0, 1, Sum[Binomial[n-j+2, 2]*a[j], {j,0,n-1}]]; Table[a[n], {n, 0, 20}] (* G. C. Greubel, Mar 07 2021 *)
-
@CachedFunction
def a(n):
if n==0: return 1
else: return sum( binomial(n-j+2,2)*a(j) for j in (0..n-1))
[a(n) for n in (0..25)] # G. C. Greubel, Mar 07 2021
A145840
Number of 4-compositions of n.
Original entry on oeis.org
1, 4, 26, 164, 1031, 6480, 40728, 255984, 1608914, 10112368, 63558392, 399478064, 2510804924, 15780945024, 99186608832, 623409013632, 3918258753416, 24627092844352, 154786536605216, 972866430709568, 6114673231661936, 38432026791933696, 241553493927992448
Offset: 0
Simone Rinaldi (rinaldi(AT)unisi.it), Oct 21 2008
- G. Louchard, Matrix compositions: a probabilistic approach, Proceedings of GASCom and Bijective Combinatorics 2008, Bibbiena, Italy, pp. 159-170.
- E. Munarini, M. Poneti and S. Rinaldi, Matrix compositions, Proceedings of Formal Power Series and Algebraic Combinatorics 2006, San Diego, USA, J. Remmel, M. Zabrocki (Editors) 445-456.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Milan Janjić, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8.
- Index entries for linear recurrences with constant coefficients, signature (8,-12,8,-2).
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(j+3, 3), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 01 2015
-
Table[Sum[Binomial[n+4*k-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Dec 31 2013 *)
A145841
Number of 5-compositions of n.
Original entry on oeis.org
1, 5, 40, 310, 2395, 18501, 142920, 1104060, 8528890, 65885880, 508970002, 3931805460, 30373291380, 234634403620, 1812556389540, 14002041536004, 108166106338760, 835585763004880, 6454920038905520, 49864411953151840, 385203777033190008, 2975708406629602400
Offset: 0
Simone Rinaldi (rinaldi(AT)unisi.it), Oct 21 2008
- G. Louchard, Matrix compositions: a probabilistic approach, Proceedings of GASCom and Bijective Combinatorics 2008, Bibbiena, Italy, pp. 159-170.
- E. Munarini, M. Poneti and S. Rinaldi, Matrix compositions, Proceedings of Formal Power Series and Algebraic Combinatorics 2006, San Diego, USA, J. Remmel, M. Zabrocki (Editors) 445-456.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Milan Janjić, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8.
- Index entries for linear recurrences with constant coefficients, signature (10,-20,20,-10,2).
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(j+4, 4), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 01 2015
-
Table[Sum[Binomial[n+5*k-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Dec 31 2013 *)
A261783
Number of compositions of n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order.
Original entry on oeis.org
1, 1, 7, 73, 1031, 18501, 403495, 10366833, 306717703, 10271072557, 384058268507, 15861842372465, 717135437119271, 35228475333207937, 1868440035684996207, 106412817671933423073, 6477200889282232394759, 419626639092214594301373, 28829330550533269570699411
Offset: 0
-
A:= proc(n, k) option remember; `if`(n=0, 1,
add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> A(n$2):
seq(a(n), n=0..20);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - j, k]*Binomial[j + k - 1, k - 1], {j, 1, n}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 24 2017, translated from Maple *)
A382923
Square array A(n,k), n >= 0, k >= 0, read by downward antidiagonals: A(n,k) is the number of m-compositions of n with k zeros.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 3, 5, 7, 0, 4, 13, 16, 16, 0, 5, 14, 33, 40, 35, 0, 6, 29, 70, 105, 100, 75, 0, 7, 27, 88, 207, 292, 244, 159, 0, 8, 51, 152, 336, 604, 758, 576, 334, 0, 9, 44, 206, 588, 1161, 1749, 1920, 1329, 696, 0, 10, 79, 300, 882, 2076, 3685, 4924, 4802, 3028, 1442
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 6, ...
3, 5, 13, 14, 29, 27, ...
7, 16, 33, 70, 88, 152, ...
16, 40, 105, 207, 336, 588, ...
35, 100, 292, 604, 1161, 2076, ...
...
A(2,0) = 3 counts:
[2], [1,1], [1]
[1].
A(2,1) = 5 counts:
[2] [0] [1] [1] [0]
[0], [2], [1] [0] [1]
[0], [1], [1].
-
G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
G_tx(10)
A161434
Number of 6-compositions.
Original entry on oeis.org
1, 6, 57, 524, 4803, 44022, 403495, 3698352, 33898338, 310705224, 2847860436, 26102905368, 239253883390, 2192952083712, 20100149570496, 184233853423936, 1688649759962676, 15477817777932456, 141866507103389516, 1300319342589168000, 11918460722228694720
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- E. Grazzini, E. Munarini, M. Poneti, S. Rinaldi, m-compositions and m-partitions: exhaustive generation and Gray code, Pure Math. Appl. 17 (2006), 111-121.
- M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- G. Louchard, Matrix Compositions: a Probabilistic analysis, Proc. GASCOM'08, Pure Mathematics and Applications, 19, 2-3, 127-146, 2008.
- E. Munarini, M. Poneti, S. Rinaldi, Matrix compositions, Journal of Integer Sequences, Vol. 12 (2009), Article 09.4.8
- Index entries for linear recurrences with constant coefficients, signature (12,-30,40,-30,12,-2).
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(j+5, 5), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 01 2015
-
Join[{1}, LinearRecurrence[{12, -30, 40, -30, 12, -2}, {6, 57, 524, 4803, 44022, 403495}, 20]] (* Jean-François Alcover, Jan 08 2016 *)
CoefficientList[Series[(1-x)^6/(2*(1-x)^6-1), {x, 0, 50}], x] (* G. C. Greubel, Nov 25 2017 *)
-
x='x+O('x^30); Vec((1-x)^6/(2*(1-x)^6-1)) \\ G. C. Greubel, Nov 25 2017
Showing 1-10 of 16 results.
Comments