cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A141312 Inverse Euler transform of A003480.

Original entry on oeis.org

1, 2, 4, 12, 31, 92, 256, 772, 2291, 7000, 21476, 66804, 208935, 658924, 2088628, 6656820, 21306270, 68468796, 220776444, 714117012, 2316229821, 7531561676, 24545492916, 80160031076, 262279882239, 859660694960, 2822177751148, 9278647613760, 30547880467863
Offset: 0

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Keywords

Comments

Dimensions of the graded components of the primitive Lie algebra of the Hopf algebra of noncommutative multisymmetric functions of level 2.

Crossrefs

Cf. A003480.

Programs

  • Maple
    EULERi(INVERT([seq(n+1,n=1..20)]));
  • Mathematica
    terms = 29;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i=1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i-d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]];
    Join[{1}, EULERi[LinearRecurrence[{4, -2}, {2, 7}, terms-1]]] (* Jean-François Alcover, Nov 25 2018 *)

Formula

a(n) ~ (2 + sqrt(2))^n / n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Alois P. Heinz, Feb 20 2017

A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304
Offset: 0

Views

Author

Keywords

Comments

These were formerly sometimes called Segner numbers.
A very large number of combinatorial interpretations are known - see references, esp. R. P. Stanley, "Catalan Numbers", Cambridge University Press, 2015. This is probably the longest entry in the OEIS, and rightly so.
The solution to Schröder's first problem: number of ways to insert n pairs of parentheses in a word of n+1 letters. E.g., for n=2 there are 2 ways: ((ab)c) or (a(bc)); for n=3 there are 5 ways: ((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).
Consider all the binomial(2n,n) paths on squared paper that (i) start at (0, 0), (ii) end at (2n, 0) and (iii) at each step, either make a (+1,+1) step or a (+1,-1) step. Then the number of such paths that never go below the x-axis (Dyck paths) is C(n). [Chung-Feller]
Number of noncrossing partitions of the n-set. For example, of the 15 set partitions of the 4-set, only [{13},{24}] is crossing, so there are a(4)=14 noncrossing partitions of 4 elements. - Joerg Arndt, Jul 11 2011
Noncrossing partitions are partitions of genus 0. - Robert Coquereaux, Feb 13 2024
a(n-1) is the number of ways of expressing an n-cycle (123...n) in the symmetric group S_n as a product of n-1 transpositions (u_1,v_1)*(u_2,v_2)*...*(u_{n-1},v_{n-1}) where u_iA000272. - Joerg Arndt and Greg Stevenson, Jul 11 2011
a(n) is the number of ordered rooted trees with n nodes, not including the root. See the Conway-Guy reference where these rooted ordered trees are called plane bushes. See also the Bergeron et al. reference, Example 4, p. 167. - Wolfdieter Lang, Aug 07 2007
As shown in the paper from Beineke and Pippert (1971), a(n-2)=D(n) is the number of labeled dissections of a disk, related to the number R(n)=A001761(n-2) of labeled planar 2-trees having n vertices and rooted at a given exterior edge, by the formula D(n)=R(n)/(n-2)!. - M. F. Hasler, Feb 22 2012
Shifts one place left when convolved with itself.
For n >= 1, a(n) is also the number of rooted bicolored unicellular maps of genus 0 on n edges. - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 15 2001
Number of ways of joining 2n points on a circle to form n nonintersecting chords. (If no such restriction imposed, then the number of ways of forming n chords is given by (2n-1)!! = (2n)!/(n!*2^n) = A001147(n).)
Arises in Schubert calculus - see Sottile reference.
Inverse Euler transform of sequence is A022553.
With interpolated zeros, the inverse binomial transform of the Motzkin numbers A001006. - Paul Barry, Jul 18 2003
The Hankel transforms of this sequence or of this sequence with the first term omitted give A000012 = 1, 1, 1, 1, 1, 1, ...; example: Det([1, 1, 2, 5; 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132]) = 1 and Det([1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429]) = 1. - Philippe Deléham, Mar 04 2004
a(n) equals the sum of squares of terms in row n of triangle A053121, which is formed from successive self-convolutions of the Catalan sequence. - Paul D. Hanna, Apr 23 2005
Also coefficients of the Mandelbrot polynomial M iterated an infinite number of times. Examples: M(0) = 0 = 0*c^0 = [0], M(1) = c = c^1 + 0*c^0 = [1 0], M(2) = c^2 + c = c^2 + c^1 + 0*c^0 = [1 1 0], M(3) = (c^2 + c)^2 + c = [0 1 1 2 1], ... ... M(5) = [0 1 1 2 5 14 26 44 69 94 114 116 94 60 28 8 1], ... - Donald D. Cross (cosinekitty(AT)hotmail.com), Feb 04 2005
The multiplicity with which a prime p divides C_n can be determined by first expressing n+1 in base p. For p=2, the multiplicity is the number of 1 digits minus 1. For p an odd prime, count all digits greater than (p+1)/2; also count digits equal to (p+1)/2 unless final; and count digits equal to (p-1)/2 if not final and the next digit is counted. For example, n=62, n+1 = 223_5, so C_62 is not divisible by 5. n=63, n+1 = 224_5, so 5^3 | C_63. - Franklin T. Adams-Watters, Feb 08 2006
Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are a(2) = 2 and a(3) = 5. Is the only semiprime Catalan number a(4) = 14? - Jonathan Vos Post, Mar 06 2006
The answer is yes. Using the formula C_n = binomial(2n,n)/(n+1), it is immediately clear that C_n can have no prime factor greater than 2n. For n >= 7, C_n > (2n)^2, so it cannot be a semiprime. Given that the Catalan numbers grow exponentially, the above consideration implies that the number of prime divisors of C_n, counted with multiplicity, must grow without limit. The number of distinct prime divisors must also grow without limit, but this is more difficult. Any prime between n+1 and 2n (exclusive) must divide C_n. That the number of such primes grows without limit follows from the prime number theorem. - Franklin T. Adams-Watters, Apr 14 2006
The number of ways to place n indistinguishable balls in n numbered boxes B1,...,Bn such that at most a total of k balls are placed in boxes B1,...,Bk for k=1,...,n. For example, a(3)=5 since there are 5 ways to distribute 3 balls among 3 boxes such that (i) box 1 gets at most 1 ball and (ii) box 1 and box 2 together get at most 2 balls:(O)(O)(O), (O)()(OO), ()(OO)(O), ()(O)(OO), ()()(OOO). - Dennis P. Walsh, Dec 04 2006
a(n) is also the order of the semigroup of order-decreasing and order-preserving full transformations (of an n-element chain) - now known as the Catalan monoid. - Abdullahi Umar, Aug 25 2008
a(n) is the number of trivial representations in the direct product of 2n spinor (the smallest) representations of the group SU(2) (A(1)). - Rutger Boels (boels(AT)nbi.dk), Aug 26 2008
The invert transform appears to converge to the Catalan numbers when applied infinitely many times to any starting sequence. - Mats Granvik, Gary W. Adamson and Roger L. Bagula, Sep 09 2008, Sep 12 2008
Limit_{n->oo} a(n)/a(n-1) = 4. - Francesco Antoni (francesco_antoni(AT)yahoo.com), Nov 24 2008
Starting with offset 1 = row sums of triangle A154559. - Gary W. Adamson, Jan 11 2009
C(n) is the degree of the Grassmannian G(1,n+1): the set of lines in (n+1)-dimensional projective space, or the set of planes through the origin in (n+2)-dimensional affine space. The Grassmannian is considered a subset of N-dimensional projective space, N = binomial(n+2,2) - 1. If we choose 2n general (n-1)-planes in projective (n+1)-space, then there are C(n) lines that meet all of them. - Benji Fisher (benji(AT)FisherFam.org), Mar 05 2009
Starting with offset 1 = A068875: (1, 2, 4, 10, 18, 84, ...) convolved with Fine numbers, A000957: (1, 0, 1, 2, 6, 18, ...). a(6) = 132 = (1, 2, 4, 10, 28, 84) dot (18, 6, 2, 1, 0, 1) = (18 + 12 + 8 + 10 + 0 + 84) = 132. - Gary W. Adamson, May 01 2009
Convolved with A032443: (1, 3, 11, 42, 163, ...) = powers of 4, A000302: (1, 4, 16, ...). - Gary W. Adamson, May 15 2009
Sum_{k>=1} C(k-1)/2^(2k-1) = 1. The k-th term in the summation is the probability that a random walk on the integers (beginning at the origin) will arrive at positive one (for the first time) in exactly (2k-1) steps. - Geoffrey Critzer, Sep 12 2009
C(p+q)-C(p)*C(q) = Sum_{i=0..p-1, j=0..q-1} C(i)*C(j)*C(p+q-i-j-1). - Groux Roland, Nov 13 2009
Leonhard Euler used the formula C(n) = Product_{i=3..n} (4*i-10)/(i-1) in his 'Betrachtungen, auf wie vielerley Arten ein gegebenes polygonum durch Diagonallinien in triangula zerschnitten werden könne' and computes by recursion C(n+2) for n = 1..8. (Berlin, 4th September 1751, in a letter to Goldbach.) - Peter Luschny, Mar 13 2010
Let A179277 = A(x). Then C(x) is satisfied by A(x)/A(x^2). - Gary W. Adamson, Jul 07 2010
a(n) is also the number of quivers in the mutation class of type B_n or of type C_n. - Christian Stump, Nov 02 2010
From Matthew Vandermast, Nov 22 2010: (Start)
Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions: 1. No two colors are chosen the same positive number of times. 2. For any two colors (c, d) that are chosen at least once, color c is chosen more times than color d iff color c appears more times in the original set than color d.
If the second requirement is lifted, the number of acceptable ways equals A000110(n+1). See related comments for A016098, A085082. (End)
Deutsch and Sagan prove the Catalan number C_n is odd if and only if n = 2^a - 1 for some nonnegative integer a. Lin proves for every odd Catalan number C_n, we have C_n == 1 (mod 4). - Jonathan Vos Post, Dec 09 2010
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that f(1)=1 and for all n >= 1 f(n+1) <= f(n)+1. For a nice bijection between this set of functions and the set of length 2n Dyck words, see page 333 of the Fxtbook (see link below). - Geoffrey Critzer, Dec 16 2010
Postnikov (2005) defines "generalized Catalan numbers" associated with buildings (e.g., Catalan numbers of Type B, see A000984). - N. J. A. Sloane, Dec 10 2011
Number of permutations in S(n) for which length equals depth. - Bridget Tenner, Feb 22 2012
a(n) is also the number of standard Young tableau of shape (n,n). - Thotsaporn Thanatipanonda, Feb 25 2012
a(n) is the number of binary sequences of length 2n+1 in which the number of ones first exceed the number of zeros at entry 2n+1. See the example below in the example section. - Dennis P. Walsh, Apr 11 2012
Number of binary necklaces of length 2*n+1 containing n 1's (or, by symmetry, 0's). All these are Lyndon words and their representatives (as cyclic maxima) are the binary Dyck words. - Joerg Arndt, Nov 12 2012
Number of sequences consisting of n 'x' letters and n 'y' letters such that (counting from the left) the 'x' count >= 'y' count. For example, for n=3 we have xxxyyy, xxyxyy, xxyyxy, xyxxyy and xyxyxy. - Jon Perry, Nov 16 2012
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps come in 2 colors. Example: a(4)=14 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 8 paths of shape HHH, 2 paths of shape UHD, 2 paths of shape UDH, and 2 paths of shape HUD. - José Luis Ramírez Ramírez, Jan 16 2013
If p is an odd prime, then (-1)^((p-1)/2)*a((p-1)/2) mod p = 2. - Gary Detlefs, Feb 20 2013
Conjecture: For any positive integer n, the polynomial Sum_{k=0..n} a(k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013
a(n) is the size of the Jones monoid on 2n points (cf. A225798). - James Mitchell, Jul 28 2013
For 0 < p < 1, define f(p) = Sum_{n>=0} a(n)*(p*(1-p))^n, then f(p) = min{1/p, 1/(1-p)}, so f(p) reaches its maximum value 2 at p = 0.5, and p*f(p) is constant 1 for 0.5 <= p < 1. - Bob Selcoe, Nov 16 2013 [Corrected by Jianing Song, May 21 2021]
No a(n) has the form x^m with m > 1 and x > 1. - Zhi-Wei Sun, Dec 02 2013
From Alexander Adamchuk, Dec 27 2013: (Start)
Prime p divides a((p+1)/2) for p > 3. See A120303(n) = Largest prime factor of Catalan number.
Reciprocal Catalan Constant C = 1 + 4*sqrt(3)*Pi/27 = 1.80613.. = A121839.
Log(Phi) = (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/a(k). See A002390 = Decimal expansion of natural logarithm of golden ratio.
3-d analog of the Catalan numbers: (3n)!/(n!(n+1)!(n+2)!) = A161581(n) = A006480(n) / ((n+1)^2*(n+2)), where A006480(n) = (3n)!/(n!)^3 De Bruijn's S(3,n). (End)
For a relation to the inviscid Burgers's, or Hopf, equation, see A001764. - Tom Copeland, Feb 15 2014
From Fung Lam, May 01 2014: (Start)
One class of generalized Catalan numbers can be defined by g.f. A(x) = (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x) with nonzero parameter q. Recurrence: (n+3)*a(n+2) -2*q*(2*n+3)*a(n+1) +4*q*(q-1)*n*a(n) = 0 with a(0)=1, a(1)=1.
Asymptotic approximation for q >= 1: a(n) ~ (2*q+2*sqrt(q))^n*sqrt(2*q*(1+sqrt(q))) /sqrt(4*q^2*Pi*n^3).
For q <= -1, the g.f. defines signed sequences with asymptotic approximation: a(n) ~ Re(sqrt(2*q*(1+sqrt(q)))*(2*q+2*sqrt(q))^n) / sqrt(q^2*Pi*n^3), where Re denotes the real part. Due to Stokes' phenomena, accuracy of the asymptotic approximation deteriorates at/near certain values of n.
Special cases are A000108 (q=1), A068764 to A068772 (q=2 to 10), A240880 (q=-3).
(End)
Number of sequences [s(0), s(1), ..., s(n)] with s(n)=0, Sum_{j=0..n} s(j) = n, and Sum_{j=0..k} s(j)-1 >= 0 for k < n-1 (and necessarily Sum_{j=0..n-1} s(j)-1 = 0). These are the branching sequences of the (ordered) trees with n non-root nodes, see example. - Joerg Arndt, Jun 30 2014
Number of stack-sortable permutations of [n], these are the 231-avoiding permutations; see the Bousquet-Mélou reference. - Joerg Arndt, Jul 01 2014
a(n) is the number of increasing strict binary trees with 2n-1 nodes that avoid 132. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 07 2014
In a one-dimensional medium with elastic scattering (zig-zag walk), first recurrence after 2n+1 scattering events has the probability C(n)/2^(2n+1). - Joachim Wuttke, Sep 11 2014
The o.g.f. C(x) = (1 - sqrt(1-4x))/2, for the Catalan numbers, with comp. inverse Cinv(x) = x*(1-x) and the functions P(x) = x / (1 + t*x) and its inverse Pinv(x,t) = -P(-x,t) = x / (1 - t*x) form a group under composition that generates or interpolates among many classic arrays, such as the Motzkin (Riordan, A005043), Fibonacci (A000045), and Fine (A000957) numbers and polynomials (A030528), and enumerating arrays for Motzkin, Dyck, and Łukasiewicz lattice paths and different types of trees and non-crossing partitions (A091867, connected to sums of the refined Narayana numbers A134264). - Tom Copeland, Nov 04 2014
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
The Catalan number series A000108(n+3), offset n=0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset n=0 (empirical observation). - Tony Foster III, Sep 05 2016
Hankel transforms of the Catalan numbers with the first 2, 4, and 5 terms omitted give A001477, A006858, and A091962, respectively, without the first 2 terms in all cases. More generally, the Hankel transform of the Catalan numbers with the first k terms omitted is H_k(n) = Product_{j=1..k-1} Product_{i=1..j} (2*n+j+i)/(j+i) [see Cigler (2011), Eq. (1.14) and references therein]; together they form the array A078920/A123352/A368025. - Andrey Zabolotskiy, Oct 13 2016
Presumably this satisfies Benford's law, although the results in Hürlimann (2009) do not make this clear. See S. J. Miller, ed., 2015, p. 5. - N. J. A. Sloane, Feb 09 2017
Coefficients of the generating series associated to the Magmatic and Dendriform operadic algebras. Cf. p. 422 and 435 of the Loday et al. paper. - Tom Copeland, Jul 08 2018
Let M_n be the n X n matrix with M_n(i,j) = binomial(i+j-1,2j-2); then det(M_n) = a(n). - Tony Foster III, Aug 30 2018
Also the number of Catalan trees, or planted plane trees (Bona, 2015, p. 299, Theorem 4.6.3). - N. J. A. Sloane, Dec 25 2018
Number of coalescent histories for a caterpillar species tree and a matching caterpillar gene tree with n+1 leaves (Rosenberg 2007, Corollary 3.5). - Noah A Rosenberg, Jan 28 2019
Finding solutions of eps*x^2+x-1 = 0 for eps small, that is, writing x = Sum_{n>=0} x_{n}*eps^n and expanding, one finds x = 1 - eps + 2*eps^2 - 5*eps^3 + 14*eps^3 - 42*eps^4 + ... with x_{n} = (-1)^n*C(n). Further, letting x = 1/y and expanding y about 0 to find large roots, that is, y = Sum_{n>=1} y_{n}*eps^n, one finds y = 0 - eps + eps^2 - 2*eps^3 + 5*eps^3 - ... with y_{n} = (-1)^n*C(n-1). - Derek Orr, Mar 15 2019
Permutations of length n that produce a bipartite permutation graph of order n [see Knuth (1973), Busch (2006), Golumbic and Trenk (2004)]. - Elise Anderson, R. M. Argus, Caitlin Owens, Tessa Stevens, Jun 27 2019
For n > 0, a random selection of n + 1 objects (the minimum number ensuring one pair by the pigeonhole principle) from n distinct pairs of indistinguishable objects contains only one pair with probability 2^(n-1)/a(n) = b(n-1)/A098597(n), where b is the 0-offset sequence with the terms of A120777 repeated (1,1,4,4,8,8,64,64,128,128,...). E.g., randomly selecting 6 socks from 5 pairs that are black, blue, brown, green, and white, results in only one pair of the same color with probability 2^(5-1)/a(5) = 16/42 = 8/21 = b(4)/A098597(5). - Rick L. Shepherd, Sep 02 2019
See Haran & Tabachnikov link for a video discussing Conway-Coxeter friezes. The Conway-Coxeter friezes with n nontrivial rows are generated by the counts of triangles at each vertex in the triangulations of regular n-gons, of which there are a(n). - Charles R Greathouse IV, Sep 28 2019
For connections to knot theory and scattering amplitudes from Feynman diagrams, see Broadhurst and Kreimer, and Todorov. Eqn. 6.12 on p. 130 of Bessis et al. becomes, after scaling, -12g * r_0(-y/(12g)) = (1-sqrt(1-4y))/2, the o.g.f. (expressed as a Taylor series in Eqn. 7.22 in 12gx) given for the Catalan numbers in Copeland's (Sep 30 2011) formula below. (See also Mizera p. 34, Balduf pp. 79-80, Keitel and Bartosch.) - Tom Copeland, Nov 17 2019
Number of permutations in S_n whose principal order ideals in the weak order are modular lattices. - Bridget Tenner, Jan 16 2020
Number of permutations in S_n whose principal order ideals in the weak order are distributive lattices. - Bridget Tenner, Jan 16 2020
Legendre gives the following formula for computing the square root modulo 2^m:
sqrt(1 + 8*a) mod 2^m = (1 + 4*a*Sum_{i=0..m-4} C(i)*(-2*a)^i) mod 2^m
as cited by L. D. Dickson, History of the Theory of Numbers, Vol. 1, 207-208. - Peter Schorn, Feb 11 2020
a(n) is the number of length n permutations sorted to the identity by a consecutive-132-avoiding stack followed by a classical-21-avoiding stack. - Kai Zheng, Aug 28 2020
Number of non-crossing partitions of a 2*n-set with n blocks of size 2. Also number of non-crossing partitions of a 2*n-set with n+1 blocks of size at most 3, and without cyclical adjacencies. The two partitions can be mapped by rotated Kreweras bijection. - Yuchun Ji, Jan 18 2021
Named by Riordan (1968, and earlier in Mathematical Reviews, 1948 and 1964) after the French and Belgian mathematician Eugène Charles Catalan (1814-1894) (see Pak, 2014). - Amiram Eldar, Apr 15 2021
For n >= 1, a(n-1) is the number of interpretations of x^n is an algebra where power-associativity is not assumed. For example, for n = 4 there are a(3) = 5 interpretations: x(x(xx)), x((xx)x), (xx)(xx), (x(xx))x, ((xx)x)x. See the link "Non-associate powers and a functional equation" from I. M. H. Etherington and the page "Nonassociative Product" from Eric Weisstein's World of Mathematics for detailed information. See also A001190 for the case where multiplication is commutative. - Jianing Song, Apr 29 2022
Number of states in the transition diagram associated with the Laplacian system over the complete graph K_N, corresponding to ordered initial conditions x_1 < x_2 < ... < x_N. - Andrea Arlette España, Nov 06 2022
a(n) is the number of 132-avoiding stabilized-interval-free permutations of size n+1. - Juan B. Gil, Jun 22 2023
Number of rooted polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
a(n) is the number of extremely lucky Stirling permutations of order n; i.e., the number of Stirling permutations of order n that have exactly n lucky cars. (see Colmenarejo et al. reference) - Bridget Tenner, Apr 16 2024

Examples

			From _Joerg Arndt_ and Greg Stevenson, Jul 11 2011: (Start)
The following products of 3 transpositions lead to a 4-cycle in S_4:
(1,2)*(1,3)*(1,4);
(1,2)*(1,4)*(3,4);
(1,3)*(1,4)*(2,3);
(1,4)*(2,3)*(2,4);
(1,4)*(2,4)*(3,4). (End)
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
For n=3, a(3)=5 since there are exactly 5 binary sequences of length 7 in which the number of ones first exceed the number of zeros at entry 7, namely, 0001111, 0010111, 0011011, 0100111, and 0101011. - _Dennis P. Walsh_, Apr 11 2012
From _Joerg Arndt_, Jun 30 2014: (Start)
The a(4) = 14 branching sequences of the (ordered) trees with 4 non-root nodes are (dots denote zeros):
01:  [ 1 1 1 1 . ]
02:  [ 1 1 2 . . ]
03:  [ 1 2 . 1 . ]
04:  [ 1 2 1 . . ]
05:  [ 1 3 . . . ]
06:  [ 2 . 1 1 . ]
07:  [ 2 . 2 . . ]
08:  [ 2 1 . 1 . ]
09:  [ 2 1 1 . . ]
10:  [ 2 2 . . . ]
11:  [ 3 . . 1 . ]
12:  [ 3 . 1 . . ]
13:  [ 3 1 . . . ]
14:  [ 4 . . . . ]
(End)
		

References

  • The large number of references and links demonstrates the ubiquity of the Catalan numbers.
  • R. Alter, Some remarks and results on Catalan numbers, pp. 109-132 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 2, edited R. C. Mullin et al., 1971.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, many references.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 53.
  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, ch. 4, pp. 96-106.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 183, 196, etc.).
  • Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
  • E. Deutsch, Dyck path enumeration, Discrete Math., 204, 167-202, 1999.
  • E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, 207-208.
  • Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182-2212. MR2404544 (2009j:05019)
  • S. Dulucq and J.-G. Penaud, Cordes, arbres et permutations. Discrete Math. 117 (1993), no. 1-3, 89-105.
  • A. Errera, Analysis situs - Un problème d'énumération, Mémoires Acad. Bruxelles, Classe des sciences, Série 2, Vol. XI, Fasc. 6, No. 1421 (1931), 26 pp.
  • Ehrenfeucht, Andrzej; Haemer, Jeffrey; Haussler, David. Quasimonotonic sequences: theory, algorithms and applications. SIAM J. Algebraic Discrete Methods 8 (1987), no. 3, 410-429. MR0897739 (88h:06026)
  • I. M. H. Etherington, Non-associate powers and a functional equation. The Mathematical Gazette, 21 (1937): 36-39; addendum 21 (1937), 153.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc., 10 (1997), 139-167.
  • Susanna Fishel, Myrto Kallipoliti and Eleni Tzanaki, Facets of the Generalized Cluster Complex and Regions in the Extended Catalan Arrangement of Type A, The electronic Journal of Combinatorics 20(4) (2013), #P7.
  • D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
  • H. G. Forder, Some problems in combinatorics, Math. Gazette, vol. 45, 1961, 199-201.
  • Fürlinger, J.; Hofbauer, J., q-Catalan numbers. J. Combin. Theory Ser. A 40 (1985), no. 2, 248-264. MR0814413 (87e:05017)
  • M. Gardner, Time Travel and Other Mathematical Bewilderments, Chap. 20 pp. 253-266, W. H. Freeman NY 1988.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. C. Golumbic and A. N. Trenk, Tolerance graphs, Vol. 89, Cambridge University Press, 2004, pp. 32.
  • S Goodenough, C Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16,
  • H. W. Gould, Research bibliography of two special number sequences, Mathematica Monongaliae, Vol. 12, 1971.
  • D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
  • M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 53-63 and 85-93.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 530.
  • N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis. Amer. Math. Monthly 80 (1973), 868-876.
  • Peter Hajnal and Gabor V. Nagy, A bijective proof of Shapiro's Catalan convolution, Elect. J. Combin., 21 (2014), #P2.42.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.23).
  • F. Harary, G. Prins, and W. T. Tutte, The number of plane trees. Indag. Math. 26, 319-327, 1964.
  • J. Harris, Algebraic Geometry: A First Course (GTM 133), Springer-Verlag, 1992, pages 245-247.
  • S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • Higgins, Peter M. Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. (1993), 113: 281-296.
  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
  • F. Hurtado, M. Noy, Ears of triangulations and Catalan numbers, Discrete Mathematics, Volume 149, Issues 1-3, Feb 22 1996, Pages 319-324.
  • M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5.
  • R. H. Jeurissen, Raney and Catalan, Discrete Math., 308 (2008), 6298-6307.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 36.
  • Kim, Ki Hang; Rogers, Douglas G.; Roush, Fred W. Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013)
  • Klarner, D. A. A Correspondence Between Sets of Trees. Indag. Math. 31, 292-296, 1969.
  • M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
  • D. E. Knuth, The Art of Computer Programming, 2nd Edition, Vol. 1, Addison-Wesley, 1973, pp. 238.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.6 (p. 450).
  • Thomas Koshy and Mohammad Salmassi, "Parity and Primality of Catalan Numbers", College Mathematics Journal, Vol. 37, No. 1 (Jan 2006), pp. 52-53.
  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
  • P. Lafar and C. T. Long, A combinatorial problem, Amer. Math. Mnthly, 69 (1962), 876-883.
  • Laradji, A. and Umar, A. On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
  • P. J. Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Mathematics Today, 35 (1999), p. 25.
  • P. J. Larcombe, On the history of the Catalan numbers: a first record in China, Mathematics Today, 35 (1999), p. 89.
  • P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum, 32 (1999/2000), 5-7.
  • P. J. Larcombe and P. D. C. Wilson, On the trail of the Catalan sequence, Mathematics Today, 34 (1998), 114-117.
  • P. J. Larcombe and P. D. C. Wilson, On the generating function of the Catalan sequence: a historical perspective, Congress. Numer., 149 (2001), 97-108.
  • G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.
  • J. J. Luo, Antu Ming, the first inventor of Catalan numbers in the world [in Chinese], Neimenggu Daxue Xuebao, 19 (1998), 239-245.
  • C. L. Mallows, R. J. Vanderbei, Which Young Tableaux Can Represent an Outer Sum?, Journal of Integer Sequences, Vol. 18, 2015, #15.9.1.
  • Toufik Mansour, Matthias Schork, and Mark Shattuck, Catalan numbers and pattern restricted set partitions. Discrete Math. 312(2012), no. 20, 2979-2991. MR2956089
  • Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
  • M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000). Zbl 0945.05037
  • D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
  • A. Milicevic and N. Trinajstic, "Combinatorial Enumeration in Chemistry", Chem. Modell., Vol. 4, (2006), pp. 405-469.
  • Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015.
  • David Molnar, "Wiggly Games and Burnside's Lemma", Chapter 8, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 102.
  • C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly, 64 (1957), 143-154.
  • A. Panholzer and H. Prodinger, Bijections for ternary trees and non-crossing trees, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
  • Papoulis, Athanasios. "A new method of inversion of the Laplace transform."Quart. Appl. Math 14.405-414 (1957): 124.
  • S. G. Penrice, Stacks, bracketings and CG-arrangements, Math. Mag., 72 (1999), 321-324.
  • C. A. Pickover, Wonders of Numbers, Chap. 71, Oxford Univ. Press NY 2000.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
  • G. Pólya, On the number of certain lattice polygons. J. Combinatorial Theory 6 1969 102-105. MR0236031 (38 #4329)
  • C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.
  • Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
  • Ronald C. Read, "The Graph Theorists who Count -- and What They Count", in 'The Mathematical Gardner', in D. A. Klarner, Ed., pp. 331-334, Wadsworth CA 1989.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
  • T. Santiago Costa Oliveira, "Catalan traffic" and integrals on the Grassmannian of lines, Discr. Math., 308 (2007), 148-152.
  • A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
  • E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
  • Shapiro, Louis W. Catalan numbers and "total information" numbers. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 531-539. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0398853 (53 #2704).
  • L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory, A 20 (1976), 375-376.
  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • L. W. Shapiro, W.-J. Woan and S. Getu, The Catalan numbers via the World Series, Math. Mag., 66 (1993), 20-22.
  • D. M. Silberger, Occurrences of the integer (2n-2)!/n!(n-1)!, Roczniki Polskiego Towarzystwa Math. 13 (1969): 91-96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Snover and S. Troyer, Multidimensional Catalan numbers, Abstracts 848-05-94 and 848-05-95, 848th Meeting, Amer. Math. Soc., Worcester Mass., March 15-16, 1989.
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, Vol. 2, 1999; see especially Chapter 6.
  • R. P. Stanley, Recent Progress in Algebraic Combinatorics, Bull. Amer. Math. Soc., 40 (2003), 55-68.
  • Richard P. Stanley, "Catalan Numbers", Cambridge University Press, 2015.
  • J. J. Sylvester, On reducible cyclodes, Coll. Math. Papers, Vol. 2, see especially page 670, where Catalan numbers appear.
  • Thiel, Marko. "A new cyclic sieving phenomenon for Catalan objects." Discrete Mathematics 340.3 (2017): 426-429.
  • I. Vun and P. Belcher, Catalan numbers, Mathematical Spectrum, 30 (1997/1998), 3-5.
  • D. Wells, Penguin Dictionary of Curious and Interesting Numbers, Entry 42 p 121, Penguin Books, 1987.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 41.
  • J. Wuttke, The zig-zag walk with scattering and absorption on the real half line and in a lattice model, J. Phys. A 47 (2014), 215203, 1-9.

Crossrefs

A row of A060854.
See A001003, A001190, A001699, A000081 for other ways to count parentheses.
Enumerates objects encoded by A014486.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A051168 (diagonal of the square array described).
Cf. A033552, A176137 (partitions into Catalan numbers).
Cf. A000753, A000736 (Boustrophedon transforms).
Cf. A120303 (largest prime factor of Catalan number).
Cf. A121839 (reciprocal Catalan constant), A268813.
Cf. A038003, A119861, A119908, A120274, A120275 (odd Catalan number).
Cf. A002390 (decimal expansion of natural logarithm of golden ratio).
Coefficients of square root of the g.f. are A001795/A046161.
For a(n) mod 6 see A259667.
For a(n) in base 2 see A264663.
Hankel transforms with first terms omitted: A001477, A006858, A091962, A078920, A123352, A368025.
Cf. A332602 (conjectured production matrix).
Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A001764 {4,oo}.

Programs

  • GAP
    A000108:=List([0..30],n->Binomial(2*n,n)/(n+1)); # Muniru A Asiru, Feb 17 2018
  • Haskell
    import Data.List (genericIndex)
    a000108 n = genericIndex a000108_list n
    a000108_list = 1 : catalan [1] where
       catalan cs = c : catalan (c:cs) where
          c = sum $ zipWith (*) cs $ reverse cs
    -- Reinhard Zumkeller, Nov 12 2011
    a000108 = map last $ iterate (scanl1 (+) . (++ [0])) [1]
    -- David Spies, Aug 23 2015
    
  • Magma
    C:= func< n | Binomial(2*n,n)/(n+1) >; [ C(n) : n in [0..60]];
    
  • Magma
    [Catalan(n): n in [0..40]]; // Vincenzo Librandi, Apr 02 2011
    
  • Maple
    A000108 := n->binomial(2*n,n)/(n+1);
    G000108 := (1 - sqrt(1 - 4*x)) / (2*x);
    spec := [ A, {A=Prod(Z,Sequence(A))}, unlabeled ]: [ seq(combstruct[count](spec, size=n+1), n=0..42) ];
    with(combstruct): bin := {B=Union(Z,Prod(B,B))}: seq(count([B,bin,unlabeled],size=n+1), n=0..25); # Zerinvary Lajos, Dec 05 2007
    gser := series(G000108, x=0, 42): seq(coeff(gser, x, n), n=0..41); # Zerinvary Lajos, May 21 2008
    seq((2*n)!*coeff(series(hypergeom([],[2],x^2),x,2*n+2),x,2*n),n=0..30); # Peter Luschny, Jan 31 2015
    A000108List := proc(m) local A, P, n; A := [1, 1]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
    A := [op(A), P[-1]] od; A end: A000108List(31); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[(2 n)!/n!/(n + 1)!, {n, 0, 20}]
    Table[4^n Gamma[n + 1/2]/(Sqrt[Pi] Gamma[n + 2]), {n, 0, 20}] (* Eric W. Weisstein, Oct 31 2024 *)
    Table[Hypergeometric2F1[1 - n, -n, 2, 1], {n, 0, 20}] (* Richard L. Ollerton, Sep 13 2006 *)
    Table[CatalanNumber @ n, {n, 0, 20}] (* Robert G. Wilson v, Feb 15 2011 *)
    CatalanNumber[Range[0, 20]] (* Eric W. Weisstein, Oct 31 2024 *)
    CoefficientList[InverseSeries[Series[x/Sum[x^n, {n, 0, 31}], {x, 0, 31}]]/x, x] (* Mats Granvik, Nov 24 2013 *)
    CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(2 x), {x, 0, 20}], x] (* Stefano Spezia, Aug 31 2018 *)
  • Maxima
    A000108(n):=binomial(2*n,n)/(n+1)$ makelist(A000108(n),n,0,30); /* Martin Ettl, Oct 24 2012 */
    
  • MuPAD
    combinat::dyckWords::count(n) $ n = 0..38 // Zerinvary Lajos, Apr 14 2007
    
  • PARI
    a(n)=binomial(2*n,n)/(n+1) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    a(n) = (2*n)! / n! / (n+1)!
    
  • PARI
    a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + x + O(x^2); while(m<=n, m*=2; A = sqrt(subst(A, x, 4*x^2)); A += (A - 1) / (2*x*A)); polcoeff(A, n));
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + x)^2 + x * O(x^n)), n))}; /* Michael Somos */
    
  • PARI
    (recur(a,b)=if(b<=2,(a==2)+(a==b)+(a!=b)*(1+a/2), (1+a/b)*recur(a,b-1))); a(n)=recur(n,n); \\ R. J. Cano, Nov 22 2012
    
  • PARI
    x='x+O('x^40); Vec((1-sqrt(1-4*x))/(2*x)) \\ Altug Alkan, Oct 13 2015
    
  • Python
    from gmpy2 import divexact
    A000108 = [1, 1]
    for n in range(1, 10**3):
        A000108.append(divexact(A000108[-1]*(4*n+2),(n+2))) # Chai Wah Wu, Aug 31 2014
    
  • Python
    # Works in Sage also.
    A000108 = [1]
    for n in range(1000):
        A000108.append(A000108[-1]*(4*n+2)//(n+2)) # Günter Rote, Nov 08 2023
    
  • Sage
    [catalan_number(i) for i in range(27)] # Zerinvary Lajos, Jun 26 2008
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A000108_list(n) :
        D = [0]*(n+1); D[1] = 1
        b = True; h = 1; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1; R.append(D[1])
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A000108_list(31) # Peter Luschny, Jun 02 2012
    

Formula

a(n) = binomial(2*n, n)/(n+1) = (2*n)!/(n!*(n+1)!) = A000984(n)/(n+1).
Recurrence: a(n) = 2*(2*n-1)*a(n-1)/(n+1) with a(0) = 1.
Recurrence: a(n) = Sum_{k=0..n-1} a(k)a(n-1-k).
G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x), and satisfies A(x) = 1 + x*A(x)^2.
a(n) = Product_{k=2..n} (1 + n/k).
a(n+1) = Sum_{i} binomial(n, 2*i)*2^(n-2*i)*a(i). - Touchard
It is known that a(n) is odd if and only if n=2^k-1, k=0, 1, 2, 3, ... - Emeric Deutsch, Aug 04 2002, corrected by M. F. Hasler, Nov 08 2015
Using the Stirling approximation in A000142 we get the asymptotic expansion a(n) ~ 4^n / (sqrt(Pi * n) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
Integral representation: a(n) = (1/(2*Pi))*Integral_{x=0..4} x^n*sqrt((4-x)/x). - Karol A. Penson, Apr 12 2001
E.g.f.: exp(2*x)*(I_0(2*x)-I_1(2*x)), where I_n is Bessel function. - Karol A. Penson, Oct 07 2001
a(n) = polygorial(n, 6)/polygorial(n, 3). - Daniel Dockery (peritus(AT)gmail.com), Jun 24 2003
G.f. A(x) satisfies ((A(x) + A(-x)) / 2)^2 = A(4*x^2). - Michael Somos, Jun 27 2003
G.f. A(x) satisfies Sum_{k>=1} k(A(x)-1)^k = Sum_{n>=1} 4^{n-1}*x^n. - Shapiro, Woan, Getu
a(n+m) = Sum_{k} A039599(n, k)*A039599(m, k). - Philippe Deléham, Dec 22 2003
a(n+1) = (1/(n+1))*Sum_{k=0..n} a(n-k)*binomial(2k+1, k+1). - Philippe Deléham, Jan 24 2004
a(n) = Sum_{k>=0} A008313(n, k)^2. - Philippe Deléham, Feb 14 2004
a(m+n+1) = Sum_{k>=0} A039598(m, k)*A039598(n, k). - Philippe Deléham, Feb 15 2004
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*binomial(k, floor(k/2)). - Paul Barry, Jan 27 2005
Sum_{n>=0} 1/a(n) = 2 + 4*Pi/3^(5/2) = F(1,2;1/2;1/4) = A268813 = 2.806133050770763... (see L'Univers de Pi link). - Gerald McGarvey and Benoit Cloitre, Feb 13 2005
a(n) = Sum_{k=0..floor(n/2)} ((n-2*k+1)*binomial(n, n-k)/(n-k+1))^2, which is equivalent to: a(n) = Sum_{k=0..n} A053121(n, k)^2, for n >= 0. - Paul D. Hanna, Apr 23 2005
a((m+n)/2) = Sum_{k>=0} A053121(m, k)*A053121(n, k) if m+n is even. - Philippe Deléham, May 26 2005
E.g.f. Sum_{n>=0} a(n) * x^(2*n) / (2*n)! = BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(x, B(X)) where f(u, v) = u - v + (u*v)^2 or B(x) = x + (x * B(x))^2 which implies B(-B(x)) = -x and also (1 + B^3) / B^2 = (1 - x^3) / x^2. - Michael Somos, Jun 27 2005
a(n) = a(n-1)*(4-6/(n+1)). a(n) = 2a(n-1)*(8a(n-2)+a(n-1))/(10a(n-2)-a(n-1)). - Franklin T. Adams-Watters, Feb 08 2006
Sum_{k>=1} a(k)/4^k = 1. - Franklin T. Adams-Watters, Jun 28 2006
a(n) = A047996(2*n+1, n). - Philippe Deléham, Jul 25 2006
Binomial transform of A005043. - Philippe Deléham, Oct 20 2006
a(n) = Sum_{k=0..n} (-1)^k*A116395(n,k). - Philippe Deléham, Nov 07 2006
a(n) = (1/(s-n))*Sum_{k=0..n} (-1)^k (k+s-n)*binomial(s-n,k) * binomial(s+n-k,s) with s a nonnegative free integer [H. W. Gould].
a(k) = Sum_{i=1..k} |A008276(i,k)| * (k-1)^(k-i) / k!. - André F. Labossière, May 29 2007
a(n) = Sum_{k=0..n} A129818(n,k) * A007852(k+1). - Philippe Deléham, Jun 20 2007
a(n) = Sum_{k=0..n} A109466(n,k) * A127632(k). - Philippe Deléham, Jun 20 2007
Row sums of triangle A124926. - Gary W. Adamson, Oct 22 2007
Limit_{n->oo} (1 + Sum_{k=0..n} a(k)/A004171(k)) = 4/Pi. - Reinhard Zumkeller, Aug 26 2008
a(n) = Sum_{k=0..n} A120730(n,k)^2 and a(k+1) = Sum_{n>=k} A120730(n,k). - Philippe Deléham, Oct 18 2008
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, the present sequence is Phi([1]) (also Phi([1,1])). - Gary W. Adamson, Oct 27 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}...Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n) where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i < l_(i+1) and l_(i+1) <> 0 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n) = A000680(n)/A006472(n+1). - Mark Dols, Jul 14 2010; corrected by M. F. Hasler, Nov 08 2015
Let A(x) be the g.f., then B(x)=x*A(x) satisfies the differential equation B'(x)-2*B'(x)*B(x)-1=0. - Vladimir Kruchinin, Jan 18 2011
Complement of A092459; A010058(a(n)) = 1. - Reinhard Zumkeller, Mar 29 2011
G.f.: 1/(1-x/(1-x/(1-x/(...)))) (continued fraction). - Joerg Arndt, Mar 18 2011
With F(x) = (1-2*x-sqrt(1-4*x))/(2*x) an o.g.f. in x for the Catalan series, G(x) = x/(1+x)^2 is the compositional inverse of F (nulling the n=0 term). - Tom Copeland, Sep 04 2011
With H(x) = 1/(dG(x)/dx) = (1+x)^3 / (1-x), the n-th Catalan number is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)), and H(x) is the o.g.f. for A115291. - Tom Copeland, Sep 04 2011
From Tom Copeland, Sep 30 2011: (Start)
With F(x) = (1-sqrt(1-4*x))/2 an o.g.f. in x for the Catalan series, G(x)= x*(1-x) is the compositional inverse and this relates the Catalan numbers to the row sums of A125181.
With H(x) = 1/(dG(x)/dx) = 1/(1-2x), the n-th Catalan number (offset 1) is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)). (End)
G.f.: (1-sqrt(1-4*x))/(2*x) = G(0) where G(k) = 1 + (4*k+1)*x/(k+1-2*x*(k+1)*(4*k+3)/(2*x*(4*k+3)+(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2011
E.g.f.: exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)) = G(0) where G(k) = 1 + (4*k+1)*x/((k+1)*(2*k+1)-x*(k+1)*(2*k+1)*(4*k+3)/(x*(4*k+3)+(k+1)*(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2011
E.g.f.: Hypergeometric([1/2],[2],4*x) which coincides with the e.g.f. given just above, and also by Karol A. Penson further above. - Wolfdieter Lang, Jan 13 2012
A076050(a(n)) = n + 1 for n > 0. - Reinhard Zumkeller, Feb 17 2012
a(n) = A208355(2*n-1) = A208355(2*n) for n > 0. - Reinhard Zumkeller, Mar 04 2012
a(n+1) = A214292(2*n+1,n) = A214292(2*n+2,n). - Reinhard Zumkeller, Jul 12 2012
G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = k*(4*x+1) + 2*x + 2 - x*(2*k+3)*(2*k+4)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: hypergeom([1/2,1],[2],4*x). - Joerg Arndt, Apr 06 2013
Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,1,-1/2-n,-1)/(n+1). - Karol A. Penson, Jul 28 2013
For n > 0: a(n) = sum of row n in triangle A001263. - Reinhard Zumkeller, Oct 10 2013
a(n) = binomial(2n,n-1)/n and a(n) mod n = binomial(2n,n) mod n = A059288(n). - Jonathan Sondow, Dec 14 2013
a(n-1) = Sum_{t1+2*t2+...+n*tn=n} (-1)^(1+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*a(1)^t1*a(2)^t2*...*a(n)^tn. - Mircea Merca, Feb 27 2014
a(n) = Sum_{k=1..n} binomial(n+k-1,n)/n if n > 0. Alexander Adamchuk, Mar 25 2014
a(n) = -2^(2*n+1) * binomial(n-1/2, -3/2). - Peter Luschny, May 06 2014
a(n) = (4*A000984(n) - A000984(n+1))/2. - Stanislav Sykora, Aug 09 2014
a(n) = A246458(n) * A246466(n). - Tom Edgar, Sep 02 2014
a(n) = (2*n)!*[x^(2*n)]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 4^(n-1)*hypergeom([3/2, 1-n], [3], 1). - Peter Luschny, Feb 03 2015
a(2n) = 2*A000150(2n); a(2n+1) = 2*A000150(2n+1) + a(n). - John Bodeen, Jun 24 2015
a(n) = Sum_{t=1..n+1} n^(t-1)*abs(Stirling1(n+1, t)) / Sum_{t=1..n+1} abs(Stirling1(n+1, t)), for n > 0, see (10) in Cereceda link. - Michel Marcus, Oct 06 2015
a(n) ~ 4^(n-2)*(128 + 160/N^2 + 84/N^4 + 715/N^6 - 10180/N^8)/(N^(3/2)*Pi^(1/2)) where N = 4*n+3. - Peter Luschny, Oct 14 2015
a(n) = Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*binomial(n+1-k,k)*a(n-k) if n > 0; and a(0) = 1. - David Pasino, Jun 29 2016
Sum_{n>=0} (-1)^n/a(n) = 14/25 - 24*arccsch(2)/(25*sqrt(5)) = 14/25 - 24*A002390/(25*sqrt(5)) = 0.353403708337278061333... - Ilya Gutkovskiy, Jun 30 2016
C(n) = (1/n) * Sum_{i+j+k=n-1} C(i)*C(j)*C(k)*(k+1), n >= 1. - Yuchun Ji, Feb 21 2016
C(n) = 1 + Sum_{i+j+kYuchun Ji, Sep 01 2016
a(n) = A001700(n) - A162551(n) = binomial(2*n+1,n+1). - 2*binomial(2*n,n-1). - Taras Goy, Aug 09 2018
G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x) = 2F1(1/2,1;2;4*x). G.f. A(x) satisfies A = 1 + x*A^2. - R. J. Mathar, Nov 17 2018
C(n) = 1 + Sum_{i=0..n-1} A000245(i). - Yuchun Ji, Jan 10 2019
From A.H.M. Smeets, Apr 11 2020: (Start)
(1+sqrt(1+4*x))/2 = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4; and sqrt(x+sqrt(x+sqrt(x+...))) = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4 and x <> 0. (End)
a(3n+1)*a(5n+4)*a(15n+10) = a(3n+2)*a(5n+2)*a(15n+11). The first case of Catalan product equation of a triple partition of 23n+15. - Yuchun Ji, Sep 27 2020
a(n) = 4^n * (-1)^(n+1) * 3F2[{n + 1,n + 1/2,n}, {3/2,1}, -1], n >= 1. - Sergii Voloshyn, Oct 22 2020
a(n) = 2^(1 + 2 n) * (-1)^(n)/(1 + n) * 3F2[{n, 1/2 + n, 1 + n}, {1/2, 1}, -1], n >= 1. - Sergii Voloshyn, Nov 08 2020
a(n) = (1/Pi)*4^(n+1)*Integral_{x=0..Pi/2} cos(x)^(2*n)*sin(x)^2 dx. - Greg Dresden, May 30 2021
From Peter Bala, Aug 17 2021: (Start)
G.f. A(x) satisfies A(x) = 1/sqrt(1 - 4*x) * A( -x/(1 - 4*x) ) and (A(x) + A(-x))/2 = 1/sqrt(1 - 4*x) * A( -2*x/(1 - 4*x) ); these are the cases k = 0 and k = -1 of the general formula 1/sqrt(1 - 4*x) * A( (k-1)*x/(1 - 4*x) ) = Sum_{n >= 0} ((k^(n+1) - 1)/(k - 1))*Catalan(n)*x^n.
2 - sqrt(1 - 4*x)/A( k*x/(1 - 4*x) ) = 1 + Sum_{n >= 1} (1 + (k + 1)^n) * Catalan(n-1)*x^n. (End)
Sum_{n>=0} a(n)*(-1/4)^n = 2*(sqrt(2)-1) (A163960). - Amiram Eldar, Mar 22 2022
0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n>=0. - Michael Somos, Dec 12 2022
G.f.: (offset 1) 1/G(x), with G(x) = 1 - 2*x - x^2/G(x) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 01 2023
a(n) = K^(2n+1, n, 1) for all n >= 0, where K^(n, s, x) is the Krawtchouk polynomial defined to be Sum_{k=0..s} (-1)^k * binomial(n-x, s-k) * binomial(x, k). - Vladislav Shubin, Aug 17 2023
From Peter Bala, Feb 03 2024: (Start)
The g.f. A(x) satisfies the following functional equations:
A(x) = 1 + x/(1 - 4*x) * A(-x/(1 - 4*x))^2,
A(x^2) = 1/(1 - 2*x) * A(- x/(1 - 2*x))^2 and, for arbitrary k,
1/(1 - k*x) * A(x/(1 - k*x))^2 = 1/(1 - (k+4)*x) * A(-x/(1 - (k+4)*x))^2. (End)
a(n) = A363448(n) + A363449(n). - Julien Rouyer, Jun 28 2024

A001003 Schroeder's second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.

Original entry on oeis.org

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, 372693519, 1968801519, 10463578353, 55909013009, 300159426963, 1618362158587, 8759309660445, 47574827600981, 259215937709463, 1416461675464871
Offset: 0

Views

Author

Keywords

Comments

If you are looking for the Schroeder numbers (a.k.a. large Schroder numbers, or big Schroeder numbers), see A006318.
Yang & Jiang (2021) call these the small 2-Schroeder numbers. - N. J. A. Sloane, Mar 28 2021
There are two schools of thought about the index for the first term. I prefer the indexing a(0) = a(1) = 1, a(2) = 3, a(3) = 11, etc.
a(n) is the number of ways to insert parentheses in a string of n+1 symbols. The parentheses must be balanced but there is no restriction on the number of pairs of parentheses. The number of letters inside a pair of parentheses must be at least 2. Parentheses enclosing the whole string are ignored.
Also length of list produced by a variant of the Catalan producing iteration: replace each integer k with the list 0,1,..,k,k+1,k,...,1,0 and get the length a(n) of the resulting (flattened) list after n iterations. - Wouter Meeussen, Nov 11 2001
Stanley gives several other interpretations for these numbers.
Number of Schroeder paths of semilength n (i.e., lattice paths from (0,0) to (2n,0), with steps H=(2,0), U=(1,1) and D(1,-1) and not going below the x-axis) with no peaks at level 1. Example: a(2)=3 because among the six Schroeder paths of semilength two HH, UHD, UUDD, HUD, UDH and UDUD, only the first three have no peaks at level 1. - Emeric Deutsch, Dec 27 2003
a(n+1) is the number of Dyck n-paths in which the interior vertices of the ascents are colored white or black. - David Callan, Mar 14 2004
Number of possible schedules for n time slots in the first-come first-served (FCFS) printer policy.
Also row sums of A086810, A033282, A126216. - Philippe Deléham, May 09 2004
a(n+1) is the number of pairs (u,v) of same-length compositions of n, 0's allowed in u but not in v and u dominates v (meaning u_1 >= v_1, u_1 + u_2 >= v_1 + v_2 and so on). For example, with n=2, a(3) counts (2,2), (1+1,1+1), (2+0,1+1). - David Callan, Jul 20 2005
The big Schroeder number (A006318) is the number of Schroeder paths from (0,0) to (n,n) (subdiagonal paths with steps (1,0) (0,1) and (1,1)). These paths fall in two classes: those with steps on the main diagonal and those without. These two classes are equinumerous and the number of paths in either class is the little Schroeder number a(n) (half the big Schroeder number). - Marcelo Aguiar (maguiar(AT)math.tamu.edu), Oct 14 2005
With offset 0, a(n) = number of (colored) Motzkin (n-1)-paths with each upstep U getting one of 2 colors and each flatstep F getting one of 3 colors. Example. With their colors immediately following upsteps/flatsteps, a(2) = 3 counts F1, F2, F3 and a(3)=11 counts U1D, U2D, F1F1, F1F2, F1F3, F2F1, F2F2, F2F3, F3F1, F3F2, F3F3. - David Callan, Aug 16 2006
Shifts left when INVERT transform applied twice. - Alois P. Heinz, Apr 01 2009
Number of increasing tableaux of shape (n,n). An increasing tableau is a semistandard tableaux with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 3 because of the three tableaux (12)(34), (13)(24), (12)(23). - Oliver Pechenik, Apr 22 2014
Number of ordered trees with no vertex of outdegree 1 and having n+1 leaves (called sometimes Schröder trees). - Emeric Deutsch, Dec 13 2014
Number of dissections of a convex (n+2)-gon by nonintersecting diagonals. Example: a(2)=3 because for a square ABCD we have (i) no diagonal, (ii) dissection with diagonal AC, and (iii) dissection with diagonal BD. - Emeric Deutsch, Dec 13 2014
The little Schroeder numbers are the moments of the Marchenko-Pastur law for the case c=2 (although the moment m0 is 1/2 instead of 1): 1/2, 1, 3, 11, 45, 197, 903, ... - Jose-Javier Martinez, Apr 07 2015
Number of generalized Motzkin paths with no level steps at height 0, from (0,0) to (2n,0), and consisting of steps U=(1,1), D=(1,-1) and H2=(2,0). For example, for n=3, we have the 11 paths: UDUDUD, UUDDUD, UDUUDD, UH2DUD, UDUH2D, UH2H2D, UUDUDD, UUUDDD, UUH2DD, UUDH2D, UH2UDD. - José Luis Ramírez Ramírez, Apr 20 2015
REVERT transform of A225883. - Vladimir Reshetnikov, Oct 25 2015
Total number of (nonempty) faces of all dimensions in the associahedron K_{n+1} of dimension n-1. For example, K_4 (a pentagon) includes 5 vertices and 5 edges together with K_4 itself (5 + 5 + 1 = 11), while K_5 includes 14 vertices, 21 edges and 9 faces together with K_5 itself (14 + 21 + 9 + 1 = 45). - Noam Zeilberger, Sep 17 2018
a(n) is the number of interval posets of permutations with n minimal elements that have exactly two realizers, up to a shift by 1 in a(4). See M. Bouvel, L. Cioni, B. Izart, Theorem 17 page 13. - Mathilde Bouvel, Oct 21 2021
a(n) is the number of sequences of nonnegative integers (u_1, u_2, ..., u_n) such that (i) u_1 = 1, (ii) u_i <= i for all i, (iii) the nonzero u_i are weakly increasing. For example, a(2) = 3 counts 10, 11, 12, and a(3) = 11 counts 100, 101, 102, 103, 110, 111, 112, 113, 120, 122, 123. See link below. - David Callan, Dec 19 2021
a(n) is the number of parking functions of size n avoiding the patterns 132 and 213. - Lara Pudwell, Apr 10 2023
a(n+1) is the number of Schroeder paths from (0,0) to (2n,0) in which level steps at height 0 come in 2 colors. - Alexander Burstein, Jul 23 2023

Examples

			G.f. = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 197*x^5 + 903*x^6 + 4279*x^7 + ...
a(2) = 3: abc, a(bc), (ab)c; a(3) = 11: abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d, ((ab)c)d.
Sum over partitions formula: a(3) = 2*a(0)*a(2) + 1*a(1)^2 + 3*(a(0)^2)*a(1) + 1*a(0)^4 = 6 + 1 + 3 + 1 = 11.
a(4) = 45 since the top row of Q^3 = (11, 14, 12, 8, 0, 0, 0, ...); (11 + 14 + 12 + 8) = 45.
		

References

  • D. Arques and A. Giorgetti, Une bijection géometrique entre une famille d'hypercartes et une famille de polygones énumérées par la série de Schroeder, Discrete Math., 217 (2000), 17-32.
  • Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
  • N. Bernasconi et al., On properties of random dissections and triangulations, Combinatorica, 30 (6) (2010), 627-654.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 618.
  • Peter J. Cameron, Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155, also p. 179, line -9. - N. J. A. Sloane, Apr 18 2014
  • C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 57.
  • D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From N. J. A. Sloane, May 11 2012
  • Emeric Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
  • Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
  • Michael Drmota, Anna de Mier, and Marc Noy, Extremal statistics on non-crossing configurations. Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (2). - N. J. A. Sloane, May 18 2014
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • P. Flajolet and M. Noy, Analytic combinatorics of non-crossing permutations, Discrete Math., 204 (1999), 203-229, Section 3.1.
  • D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
  • Wolfgang Gatterbauer and Dan Suciu, Dissociation and propagation for approximate lifted inference with standard relational database management systems, The VLDB Journal, February 2017, Volume 26, Issue 1, pp. 5-30; DOI 10.1007/s00778-016-0434-5
  • Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
  • D. Gouyou-Beauchamps and B. Vauquelin, Deux propriétés combinatoires des nombres de Schroeder, Theor. Inform. Appl., 22 (1988), 361-388.
  • N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
  • M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, various sections (e.g. p. 534 of 2nd ed.).
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, (p. 539 of 3rd ed.).
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.2.1.6, Problem 66, p. 479.
  • J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1979), 253-270.
  • Ana Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, 30 (2015), #7.
  • T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
  • L. Ozsvart, Counting ordered graphs that avoid certain subgraphs, Discr. Math., 339 (2016), 1871-1877.
  • R. C. Read, On general dissections of a polygon, Aequat. Mathem. 18 (1978) 370-388, Table 6
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 168.
  • E. Schroeder, Vier combinatorische Probleme, Zeit. f. Math. Phys., 15 (1870), 361-376.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178; see page 239, Exercise 6.39b.
  • H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 198.
  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

See A000081, A000108, A001190, A001699, for other ways to count parentheses.
Row sums of A033282, A033877, A086810, A126216.
Right-hand column 1 of convolution triangle A011117.
Column 1 of A336573. Column 0 of A104219.
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, this sequence, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Cf. A006318 (Schroeder numbers).

Programs

  • Haskell
    a001003 = last . a144944_row  -- Reinhard Zumkeller, May 11 2013
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!( (1+x -Sqrt(1-6*x+x^2) )/(4*x) )); // G. C. Greubel, Oct 27 2024
  • Maple
    t1 := (1/(4*x))*(1+x-sqrt(1-6*x+x^2)); series(t1,x,40);
    invtr:= proc(p) local b; b:= proc(n) option remember; local i; `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1)) end end: a:='a': f:= (invtr@@2)(a): a:= proc(n) if n<0 then 1 else f(n-1) fi end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 01 2009
    # Computes n -> [a[0],a[1],..,a[n]]
    A001003_list := proc(n) local j,a,w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a,list) end: A001003_list(100); # Peter Luschny, May 17 2011
  • Mathematica
    Table[Length[Flatten[Nest[ #/.a_Integer:> Join[Range[0, a + 1], Range[a, 0, -1]] &, {0}, n]]], {n, 0, 10}]; Sch[ 0 ] = Sch[ 1 ] = 1; Sch[ n_Integer ] := Sch[ n ] = (3(2n - 1)Sch[ n - 1 ] - (n - 2)Sch[ n - 2 ])/(n + 1); Array[ Sch, 24, 0]
    (* Second program: *)
    a[n_] := Hypergeometric2F1[-n + 1, n + 2, 2, -1]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 09 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 6 x + x^2]) / (4 x), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    Table[(KroneckerDelta[n] - GegenbauerC[n+1, -1/2, 3])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    a[n_] := -LegendreP[n, -1, 2, 3] I / Sqrt[2]; a[0] = 1;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 16 2019 *)
    a[1]:=1; a[2]:=1; a[n_]:=a[n] = a[n-1]+2 Sum[a[k] a[n-k], {k,2,n-1}]; Map[a, Range[24]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
    CoefficientList[InverseSeries[Series[x/(Series[(1 - x)/(1 - 2  x), {x, 0, 24}]), {x, 0, 24}]]/x, x] (* Mats Granvik, Jun 30 2025 *)
  • PARI
    {a(n) = if( n<1, n==0, sum( k=0, n, 2^k * binomial(n, k) * binomial(n, k-1) ) / (2*n))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoef( exp(3*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoef( serreverse( (x - 2*x^2) / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    N=30; x='x+O('x^N); Vec( (1+x-(1-6*x+x^2)^(1/2))/(4*x) ) \\ Hugo Pfoertner, Nov 19 2018
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)]
    def A001003_list(n):
        a = [0 for i in range(n)]
        a[0] = 1
        for w in range(1, n):
            s = 0
            for j in range(1, w):
                s += a[j]*a[w-j-1]
            a[w] = a[w-1]+2*s
        return a
    # Peter Luschny, May 17 2011
    
  • Python
    from gmpy2 import divexact
    A001003 = [1, 1]
    for n in range(3,10**3):
        A001003.append(divexact(A001003[-1]*(6*n-9)-(n-3)*A001003[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A001003_list(n) :
        D = [0]*(n+1); D[1] = 1/2
        b = True; h = 2; R = [1]
        for i in range(2*n-2) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1;
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]);
            b = not b
        return R
    A001003_list(24) # Peter Luschny, Jun 02 2012
    

Formula

D-finite with recurrence: (n+1) * a(n) = (6*n-3) * a(n-1) - (n-2) * a(n-2) if n>1. a(0) = a(1) = 1.
a(n) = 3*a(n-1) + 2*A065096(n-2) (n>2). If g(x) = 1 + 3*x + 11*x^2 + 45*x^3 + ... + a(n)*x^n + ..., then g(x) = 1 + 3(x*g(x)) + 2(x*g(x))^2, g(x)^2 = 1 + 6*x + 31*x^2 + 156*x^3 + ... + A065096(n)*x^n + ... - Paul D. Hanna, Jun 10 2002
a(n+1) = -a(n) + 2*Sum_{k=1..n} a(k)*a(n+1-k). - Philippe Deléham, Jan 27 2004
a(n-2) = (1/(n-1))*Sum_{k=0..n-3} binomial(n-1,k+1)*binomial(n-3,k)*2^(n-3-k) for n >= 3 [G. Polya, Elemente de Math., 12 (1957), p. 115.] - N. J. A. Sloane, Jun 13 2015
G.f.: (1 + x - sqrt(1 - 6*x + x^2) )/(4*x) = 2/(1 + x + sqrt(1 - 6*x + x^2)).
a(n) ~ W*(3+sqrt(8))^n*n^(-3/2) where W = (1/4)*sqrt((sqrt(18)-4)/Pi) [See Knuth I, p. 534, or Perez. Note that the formula on line 3, page 475 of Flajolet and Sedgewick seems to be wrong - it has to be multiplied by 2^(1/4).] - N. J. A. Sloane, Apr 10 2011
The correct asymptotic for this sequence is a(n) ~ W*(3+sqrt(8))^n*n^(-3/2), where W = (1+sqrt(2))/(2*2^(3/4)*sqrt(Pi)) = 0.404947065905750651736243... Result in book by D. Knuth (p. 539 of 3rd edition, exercise 12) is for sequence b(n), but a(n) = b(n+1)/2. Therefore is asymptotic a(n) ~ b(n) * (3+sqrt(8))/2. - Vaclav Kotesovec, Sep 09 2012
The Hankel transform of this sequence gives A006125 = 1, 1, 2, 8, 64, 1024, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n+1) = Sum_{k=0..floor((n-1)/2)} 2^k * 3^(n-1-2k) * binomial(n-1, 2k) * Catalan(k). This formula counts colored Dyck paths by the same parameter by which Touchard's identity counts ordinary Dyck paths: number of DDUs (U=up step, D=down step). See also Gouyou-Beauchamps reference. - David Callan, Mar 14 2004
From Paul Barry, May 24 2005: (Start)
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k)*C(2n-k, n)*(-1)^k*2^(n-k) [with offset 0].
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k+1)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} (1/(k+1))*C(n, k)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} A088617(n, k)*(-1)^(n-k)*2^k [with offset 0]. (End)
E.g.f. of a(n+1) is exp(3*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
Reversion of (x-2*x^2)/(1-x) is g.f. offset 1.
For n>=1, a(n) = Sum_{k=0..n} 2^k*N(n, k) where N(n, k) = (1/n)*C(n, k)*C(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003 [This formula counts colored Dyck paths by number of peaks, which is easy to see because the Narayana numbers count Dyck paths by number of peaks and the number of peaks determines the number of interior ascent vertices.]
a(n) = Sum_{k=0..n} A088617(n, k)*2^k*(-1)^(n-k). - Philippe Deléham, Jan 21 2004
For n > 0, a(n) = (1/(n+1)) * Sum_{k = 0 .. n-1} binomial(2*n-k, n) * binomial(n-1, k). This formula counts colored Dyck paths (as above) by number of white vertices. - David Callan, Mar 14 2004
a(n-1) = (d^(n-1)/dx^(n-1))((1-x)/(1-2*x))^n/n!|_{x=0}. (For a proof see the comment on the unsigned row sums of triangle A111785.)
From Wolfdieter Lang, Sep 12 2005: (Start)
a(n) = (1/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k, k-1).
a(n) = hypergeom([1-n, n+2], [2], -1), n>=1. (End)
a(n) = hypergeom([1-n, -n], [2], 2) for n>=0. - Peter Luschny, Sep 22 2014
a(m+n+1) = Sum_{k>=0} A110440(m, k)*A110440(n, k)*2^k = A110440(m+n, 0). - Philippe Deléham, Sep 14 2005
Sum over partitions formula (reference Schroeder paper p. 362, eq. (1) II). Number the partitions of n according to Abramowitz-Stegun pp. 831-832 (see reference under A105805) with k=1..p(n)= A000041(n). For n>=1: a(n-1) = Sum_{k=2..p(n)} A048996(n,k)*a(1)^e(k, 1)*a(1)^e(k, 2)*...*a(n-2)^e(k, n-1) if the k-th partition of n in the mentioned order is written as (1^e(k, 1), 2^e(k, 2), ..., (n-1)e(k, n-1)). Note that the first (k=1) partition (n^1) has to be omitted. - Wolfdieter Lang, Aug 23 2005
Starting (1, 3, 11, 45, ...), = row sums of triangle A126216 = A001263 * [1, 2, 4, 8, 16, ...]. - Gary W. Adamson, Nov 30 2007
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1+x-2x/(1+x-2x/(1+x-2x/(1+x-2x/(1-.... (continued fraction).
G.f.: 1/(1-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction).
G.f.: 1/(1-x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1-... (continued fraction). (End)
G.f.: 1 / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / ... )))). - Michael Somos, May 19 2013
a(n) = (LegendreP(n+1,3)-3*LegendreP(n,3))/(4*n) for n>0. - Mark van Hoeij, Jul 12 2010 [This formula is mentioned in S.-J. Kettle's 1982 letter - see link. N. J. A. Sloane, Jun 13 2015]
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, where M is the production matrix:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
2, 2, 2, 2, 2, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Gary W. Adamson, Aug 23 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q is the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 1, 1, 2, 0, ...
1, 1, 1, 1, 2, ...
... (End)
Let h(t) = (1-t)^2/(2*(1-t)^2-1) = 1/(1-(2*t+3*t^2+4*t^3+...)), an o.g.f. for A003480, then for A001003 a(n) = (1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=1. (Cf. A086810.) - Tom Copeland, Sep 06 2011
A006318(n) = 2*a(n) if n>0. - Michael Somos, Mar 31 2007
BINOMIAL transform is A118376 with offset 0. REVERT transform is A153881. INVERT transform is A006318. INVERT transform of A114710. HANKEL transform is A139685. PSUM transform is A104858. - Michael Somos, May 19 2013
G.f.: 1 + x/(Q(0) - x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = A144944(n,n) = A186826(n,0). - Reinhard Zumkeller, May 11 2013
a(n)=(-1)^n*LegendreP(n,-1,-3)/sqrt(2), n > 0, LegendreP(n,a,b) is the Legendre function. - Karol A. Penson, Jul 06 2013
Integral representation as n-th moment of a positive weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2, is the discrete (atomic) part, and W_c(x) = sqrt(8-(x-3)^2)/(4*Pi*x) is the continuous part of W(x) defined on (3 sqrt(8),3+sqrt(8)): a(n) = int( x^n*W_a(x), x=-eps..eps ) + int( x^n*W_c(x), x = 3-sqrt(8)..3+sqrt(8) ), for any eps>0, n>=0. W_c(x) is unimodal, of bounded variation and W_c(3-sqrt(8)) = W_c(3+sqrt(8)) = 0. Note that the position of the Dirac peak (x=0) lies outside support of W_c(x). - Karol A. Penson and Wojciech Mlotkowski, Aug 05 2013
G.f.: 1 + x/G(x) with G(x) = 1 - 3*x - 2*x^2/G(x) (continued fraction). - Nikolaos Pantelidis, Dec 17 2022

A007052 Number of order-consecutive partitions of n.

Original entry on oeis.org

1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248, 5372879343616, 18344157523968, 62630871408640, 213835170586624
Offset: 0

Views

Author

Colin Mallows, N. J. A. Sloane, and Simon Plouffe

Keywords

Comments

After initial terms, first differs from A291292 at a(6) = 1352, A291292(8) = 1353.
Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 3) is "size of raises in pot-limit poker, one blind, maximum raising".
It appears that this sequence is the BinomialMean transform of A001653 (see A075271). - John W. Layman, Oct 03 2002
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 3, s(2n+1) = 4. - Herbert Kociemba, Jun 12 2004
Equals the INVERT transform of (1, 2, 5, 13, 34, 89, ...). - Gary W. Adamson, May 01 2009
a(n) is the number of compositions of n when there are 3 types of ones. - Milan Janjic, Aug 13 2010
a(n)/a(n-1) tends to (4 + sqrt(8))/2 = 3.414213.... Gary W. Adamson, Jul 30 2013
a(n) is the first subdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Number of words of length n over {0,1,2,3,4} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
From Gus Wiseman, Mar 05 2020: (Start)
Also the number of unimodal sequences of length n + 1 covering an initial interval of positive integers, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the a(0) = 1 through a(2) = 10 sequences are:
(1) (1,1) (1,1,1)
(1,2) (1,1,2)
(2,1) (1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,1)
(2,2,1)
(2,3,1)
(3,2,1)
Missing are: (2,1,2), (2,1,3), (3,1,2).
Conjecture: Also the number of ordered set partitions of {1..n + 1} where no element of any block is greater than any element of a non-adjacent consecutive block. For example, the a(0) = 1 through a(2) = 10 ordered set partitions are:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1}} {{1,2},{3}}
{{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
a(n-1) is the number of hexagonal directed-column convex polyominoes having area n (see Baril et al. at page 4). - Stefano Spezia, Oct 14 2023

Examples

			G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011
  • Mathematica
    a[n_]:=(MatrixPower[{{3,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    a[ n_] := ((2 + Sqrt[2])^(n + 1) + (2 - Sqrt[2])^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *)
    LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],unimodQ]],{n,6}] (* Gus Wiseman, Mar 06 2020 *)
  • PARI
    {a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */
    

Formula

a(n+1) = 4*a(n) - 2*a(n-1).
G.f.: (1-x)/(1-4*x+2*x^2).
Binomial transform of Pell numbers 1, 2, 5, 12, ... (A000129).
a(n) = A006012(n+1)/2 = A056236(n+1)/4. - Michael Somos, Mar 06 2003
a(n) = (A035344(n)+1)/2; a(n) = (2+sqrt(2))^n(1/2+sqrt(2)/4)+(2-sqrt(2))^n(1/2-sqrt(2)/4). - Paul Barry, Jul 16 2003
Second binomial transform of (1, 1, 2, 2, 4, 4, ...). a(n) = Sum_{k=1..floor(n/2)}, C(n, 2k)*2^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = ( (2-sqrt(2))^(n+1) + (2+sqrt(2))^(n+1) )/4. - Herbert Kociemba, Jun 12 2004
a(n) = both left and right terms in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A007070(n) a(n)]. E.g., a(3) = 34. M^3 * [1 1 1] = [34 48 34] (center term is A007070(3)). - Gary W. Adamson, Dec 18 2004
The i-th term of the sequence is the entry (2, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 3)). - Simone Severini, Oct 15 2005
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x)+sinh(sqrt(2)*x)/sqrt(2)). - Paul Barry, Nov 20 2003
a(n) = A007068(2*n), n>0. - R. J. Mathar, Aug 17 2009
If p[i]=Fibonacci(2i-1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n-1) = Sum_{k=-floor(n/4)..floor(n/4)} (-1)^k*binomial(2*n,n+4*k)/2. - Mircea Merca, Jan 28 2012
G.f.: G(0)*(1-x)/(2*x) + 1 - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = 3*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). - Gary W. Adamson, Aug 12 2013
a(n) = a(-2-n) * 2^(n+1) for all n in Z. - Michael Somos, Jan 25 2017

A007070 a(n) = 4*a(n-1) - 2*a(n-2) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, 3028544, 10340096, 35303296, 120532992, 411525376, 1405035520, 4797091328, 16378294272, 55918994432, 190919389184, 651839567872, 2225519493120, 7598398836736, 25942556360704, 88573427769344, 302408598355968
Offset: 0

Views

Author

Keywords

Comments

Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 4) is "size of raises in pot-limit poker, one blind, maximum raising."
It appears that this sequence is the BinomialMean transform of A002315 - see A075271. - John W. Layman, Oct 02 2002
Number of (s(0), s(1), ..., s(2n+3)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+3, s(0) = 1, s(2n+3) = 4. - Herbert Kociemba, Jun 11 2004
a(n) = number of distinct matrix products in (A+B+C+D)^n where commutators [A,B]=[C,D]=0 but neither A nor B commutes with C or D. - Paul D. Hanna and Joshua Zucker, Feb 01 2006
The n-th term of the sequence is the entry (1,2) in the n-th power of the matrix M=[1,-1;-1,3]. - Simone Severini, Feb 15 2006
Hankel transform of this sequence is [1,-2,0,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
A204089 convolved with A000225, e.g., a(4) = 164 = (1*31 + 1*15 + 4*7 + 14*3 + 48*1) = (31 + 15 + 28 + 42 + 48). - Gary W. Adamson, Dec 23 2008
Equals INVERT transform of A000225: (1, 3, 7, 15, 31, ...). - Gary W. Adamson, May 03 2009
For n>=1, a(n-1) is the number of generalized compositions of n when there are 2^i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Binomial transform of A078057. - R. J. Mathar, Mar 28 2011
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... . - R. J. Mathar, Aug 10 2012
a(n) is the diagonal of array A228405. - Richard R. Forberg, Sep 02 2013
From Wolfdieter Lang, Oct 01 2013: (Start)
a(n) appears together with A106731, both interspersed with zeros, in the representation of nonnegative powers of the algebraic number rho(8) = 2*cos(Pi/8) = A179260 of degree 4, which is the length ratio of the smallest diagonal and the side in the regular octagon.
The minimal polynomial for rho(8) is C(8,x) = x^4 - 4*x^2 + 2, hence rho(8)^n = A(n+1)*1 + A(n)*rho(8) + B(n+1)*rho(8)^2 + B(n)*rho(8)^3, n >= 0, with A(2*k) = 0, k >= 0, A(1) = 1, A(2*k+1) = A106731(k-1), k >= 1, and B(2*k) = 0, k >= 0, B(1) = 0, B(2*k+1) = a(k-1), k >= 1. See also the P. Steinbach reference given under A049310. (End)
The ratio a(n)/A006012(n) converges to 1+sqrt(2). - Karl V. Keller, Jr., May 16 2015
From Tom Copeland, Dec 04 2015: (Start)
An aerated version of this sequence is given by the o.g.f. = 1 / (1 - 4 x^2 + 2 x^4) = 1 / [x^4 a_4(1/x)] = 1 / determinant(I - x M) = exp[-log(1 -4 x + 2 x^4)], where M is the adjacency matrix for the simple Lie algebra B_4 given in A265185 with the characteristic polynomial a_4(x) = x^4 - 4 x^2 + 2 = 2 T_4(x/2) = A127672(4,x), where T denotes a Chebyshev polynomial of the first kind.
A133314 relates a(n) to the reciprocal of the e.g.f. 1 - 4 x + 4 x^2/2!. (End)
a(n) is the number of vertices of the Minkowski sum of n simplices with vertices e_(2*i+1), e_(2*i+2), e_(2*i+3), e_(2*i+4) for i=0,...,n-1, where e_i is a standard basis vector. - Alejandro H. Morales, Oct 03 2022

Examples

			a(3) = 48 = 3 * 4 + 4 + 1 + 1 = 3*a(2) + a(1) + a(0) + 1.
Example for the octagon rho(8) powers: rho(8)^4  = 2 + sqrt(2) = -2*1 + 4*rho(8)^2  = A(5)*1 + A(4)*rho(8) + B(5)*rho(8)^2 + B(4)*rho(8)^3, with a(5) = A106731(1) = -2, B(5) = a(1) = 4, A(4) = 0, B(4) = 0. - _Wolfdieter Lang_, Oct 01 2013
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059474. - David W. Wilson, Aug 14 2006
Equals 2 * A003480, n>0.
Row sums of A140071.

Programs

  • Haskell
    a007070 n = a007070_list !! n
    a007070_list = 1 : 4 : (map (* 2) $ zipWith (-)
       (tail $ map (* 2) a007070_list) a007070_list)
    -- Reinhard Zumkeller, Jan 16 2012
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-8); S:=[ ((4+r)^(1+n)-(4-r)^(1+n))/((2^(1+n))*r): n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Vincenzo Librandi, Mar 27 2011
    
  • Magma
    [n le 2 select 3*n-2 else 4*Self(n-1)-2*Self(n-2): n in [1..23]];  // Bruno Berselli, Mar 28 2011
    
  • Maple
    A007070 :=proc(n) option remember; if n=0 then 1 elif n=1 then 4 else 4*procname(n-1)-2*procname(n-2); fi; end:
    seq(A007070(n), n=0..30); # Wesley Ivan Hurt, Dec 06 2015
  • Mathematica
    LinearRecurrence[{4,-2}, {1,4}, 30] (* Harvey P. Dale, Sep 16 2014 *)
  • PARI
    a(n)=polcoeff(1/(1-4*x+2*x^2)+x*O(x^n),n)
    
  • PARI
    a(n)=if(n<1,1,ceil((2+sqrt(2))*a(n-1)))
    
  • Sage
    [lucas_number1(n,4,2) for n in range(1, 24)]# Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: 1/(1 - 4*x + 2*x^2).
Preceded by 0, this is the binomial transform of the Pell numbers A000129. Its e.g.f. is then exp(2*x)*sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, May 09 2003
a(n) = ((2+sqrt(2))^(n+1) - (2-sqrt(2))^(n+1))/sqrt(8). - Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008, corrected Mar 28 2011
a(n) = (2 - sqrt(2))^n*(1/2 - sqrt(2)/2) + (2 + sqrt(2))^n*(1/2 + sqrt(2)/2). - Paul Barry, May 09 2003
a(n) = ceiling((2 + sqrt(2))*a(n-1)). - Benoit Cloitre, Aug 15 2003
a(n) = U(n, sqrt(2))*sqrt(2)^n. - Paul Barry, Nov 19 2003
a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)*sin(r*Pi/2)*(2*cos(r*Pi/8))^(2*n+3). - Herbert Kociemba, Jun 11 2004
a(n) = center term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [A007052(n) a(n) A007052(n)]. E.g., a(3) = 48 since M^3 * [1 1 1] = [34 48 34], where 34 = A007052(3). - Gary W. Adamson, Dec 18 2004
This is the binomial mean transform of A002307. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(2n) = Sum_{r=0..n} 2^(2n-1-r)*(4*binomial(2n-1,2r) + 3*binomial(2n-1,2r+1)) a(2n-1) = Sum_{r=0..n} 2^(2n-2-r)*(4*binomial(2n-2,2r) + 3*binomial(2n-2,2r+1)). - Jeffrey Liese, Oct 12 2006
a(n) = 3*a(n - 1) + a(n - 2) + a(n - 3) + ... + a(0) + 1. - Gary W. Adamson, Feb 18 2011
G.f.: 1/(1 - 4*x + 2*x^2) = 1/( x*(1 + U(0)) ) - 1/x where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) )); (continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 05 2012
G.f.: A(x) = G(0)/(1-2*x) where G(k) = 1 + 2*x/(1 - 2*x - x*(1-2*x)/(x + (1-2*x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n-1) = Sum_{k=0..n} binomial(2*n, n+k)*(k|8) where (k|8) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, May 20 2024

A006012 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.

Original entry on oeis.org

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then a(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...). (End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N=2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
... (End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of decreasing sizes, followed by a series of reversals of increasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025
Number of permutations of [n] that are correctly sorted after performing one left-to-right pass and one right-to-left pass of the cocktail sort. - Thomas Baruchel, May 16 2025

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006012 n = a006012_list !! n
    a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
    (map (* 2) a006012_list)
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..7); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{4,-2},{1,2},50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)),{n,50}]]] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    l = [1, 2]
    for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
    print(l)  # Indranil Ghosh, Jul 02 2017
    
  • SageMath
    A006012=BinaryRecurrenceSequence(4,-2,1,2)
    print([A006012(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Limit_{n -> oo} a(n)/a(n-1) = 2 + sqrt(2). - Zak Seidov, Oct 12 2002
From Paul Barry, May 08 2003: (Start)
Binomial transform of A001333.
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 2^((n-2)/2)*( (n+1 mod 2)*A002203(n) + 2*sqrt(2)*(n mod 2)*A000129(n) ).
a(n) = 2^(n/2)*ChebyshevT(n, sqrt(2)). (End)

A008315 Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 15, 104
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364, A053121.
Number of standard tableaux of shape (n-k,k) (0<=k<=floor(n/2)). Example: T(4,1)=3 because in th top row we can have 124, 134, or 123 (but not 234). - Emeric Deutsch, May 23 2004
T(n,k) is the number of n-digit binary words (length n sequences on {0,1}) containing k 1's such that no initial segment of the sequence has more 1's than 0's. - Geoffrey Critzer, Jul 31 2009
T(n,k) is the number of dispersed Dyck paths (i.e. Motzkin paths with no (1,0) steps at positive heights) of length n and having k (1,1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, May 30 2011
T(n,k) is the number of length n left factors of Dyck paths having k (1,-1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), we have UUUUD, UUUDU, UUDUU, and UDUUU. There is a simple bijection between length n left factors of Dyck paths and dispersed Dyck paths of length n, that takes D steps into D steps. - Emeric Deutsch, Jun 19 2011
Triangle, with zeros omitted, given by (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...) DELTA (0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
T(n,k) are rational multiples of A055151(n,k). - Peter Luschny, Oct 16 2015
T(2*n,n) = Sum_{k>=0} T(n,k)^2 = A000108(n), T(2*n+1,n) = A000108(n+1). - Michael Somos, Jun 08 2020

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 3,  2;
  1, 4,  5;
  1, 5,  9,  5;
  1, 6, 14, 14;
  1, 7, 20, 28, 14;
  ...
T(5,2) = 5 because there are 5 such sequences: {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}. - _Geoffrey Critzer_, Jul 31 2009
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.

Crossrefs

T(2n, n) = A000108 (Catalan numbers), row sums = A001405 (central binomial coefficients).
This is also the positive half of the triangle in A008482. - Michael Somos
This is another reading (by shallow diagonals) of the triangle A009766, i.e. A008315[n] = A009766[A056536[n]].

Programs

  • Haskell
    a008315 n k = a008315_tabf !! n !! k
    a008315_row n = a008315_tabf !! n
    a008315_tabf = map reverse a008313_tabf
    -- Reinhard Zumkeller, Nov 14 2013
  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, n-2*k):
    seq(seq(T(n, k), k=0..n/2), n=0..16);  # Alois P. Heinz, Oct 14 2022
  • Mathematica
    Table[Binomial[k, i]*(k - 2 i + 1)/(k - i + 1), {k, 0, 20}, {i, 0, Floor[k/2]}] // Grid (* Geoffrey Critzer, Jul 31 2009 *)
  • PARI
    {T(n, k) = if( k<0 || k>n\2, 0, if( n==0, 1, T(n-1, k-1) + T(n-1, k)))}; /* Michael Somos, Aug 17 1999 */
    

Formula

T(n, 0) = 1 if n >= 0; T(2*k, k) = T(2*k-1, k-1) if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) if k=1, 2, ..., floor(n/2). - Michael Somos, Aug 17 1999
T(n, k) = binomial(n, k) - binomial(n, k-1). - Michael Somos, Aug 17 1999
Rows of Catalan triangle A008313 read backwards. Sum_{k>=0} T(n, k)^2 = A000108(n); A000108 : Catalan numbers. - Philippe Deléham, Feb 15 2004
T(n,k) = C(n,k)*(n-2*k+1)/(n-k+1). - Geoffrey Critzer, Jul 31 2009
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 12 2011

Extensions

Expanded description from Clark Kimberling, Jun 15 1997

A261780 Number A(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 4, 0, 1, 4, 15, 24, 8, 0, 1, 5, 26, 73, 82, 16, 0, 1, 6, 40, 164, 354, 280, 32, 0, 1, 7, 57, 310, 1031, 1716, 956, 64, 0, 1, 8, 77, 524, 2395, 6480, 8318, 3264, 128, 0, 1, 9, 100, 819, 4803, 18501, 40728, 40320, 11144, 256, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2015

Keywords

Comments

Also the number of k-compositions of n: matrices with k rows of nonnegative integers with positive column sums and total element sum n.
A(2,2) = 7: (matrices and corresponding marked compositions are given)
[1 1] [0 0] [1 0] [0 1] [1] [2] [0]
[0 0] [1 1] [0 1] [1 0] [1] [0] [2]
1a1a, 1b1b, 1a1b, 1b1a, 2ab, 2aa, 2bb.

Examples

			A(3,2) = 24: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a2aa, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1b2bb, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,      1, ...
  0,  1,   2,    3,     4,      5,      6, ...
  0,  2,   7,   15,    26,     40,     57, ...
  0,  4,  24,   73,   164,    310,    524, ...
  0,  8,  82,  354,  1031,   2395,   4803, ...
  0, 16, 280, 1716,  6480,  18501,  44022, ...
  0, 32, 956, 8318, 40728, 142920, 403495, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A261783.
Cf. A261718 (same for partitions), A261781.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[n_, k_] := SeriesCoefficient[(1-x)^k/(2*(1-x)^k-1), {x, 0, n}]; Table[ a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Feb 07 2017 *)

Formula

G.f. of column k: (1-x)^k/(2*(1-x)^k-1).
A(n,k) = Sum_{i=0..k} C(k,i) * A261781(n,k-i).
A(n,k) = Sum_{j>=0} (1/2)^(j+1) * binomial(n-1+k*j,n). - Seiichi Manyama, Aug 06 2024

A181289 Triangle read by rows: T(n,k) is the number of 2-compositions of n having length k (0 <= k <= n).

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 4, 12, 8, 0, 5, 25, 36, 16, 0, 6, 44, 102, 96, 32, 0, 7, 70, 231, 344, 240, 64, 0, 8, 104, 456, 952, 1040, 576, 128, 0, 9, 147, 819, 2241, 3400, 2928, 1344, 256, 0, 10, 200, 1372, 4712, 9290, 11040, 7840, 3072, 512, 0, 11, 264, 2178, 9108, 22363
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. The length of the 2-composition is the number of columns.
From Tom Copeland, Sep 06 2011: (Start)
R(t,z) = (1-z)^2 / ((1+t)*(1-z)^2-1) = 1/(t - (2*z + 3*z^2 + 4*z^3 + 5*z^4 + ...)) = 1/t + (1/t)^2*2*z + (1/t)^3*(4+3t)*z^2 + (1/t)^4*(8+12*t+4*t^2)*z^3 + ... gives row reversed polynomials of A181289 with G(t,z) = R(1/t,z)/t.
R(t,z) is related to generators for A033282 and A001003 (t=1) and can be umbrally extended to give a partition generator for A133437. (End)
A refined, reverse version of this array is given in A253722. - Tom Copeland, May 02 2015
The infinitesimal generator (infinigen) for the face polynomials of associahedra A086810/A033282, read as decreasing powers, (and for the dual simplicial complex read as increasing powers) can be formed from the row polynomials P(n,t) of this entry. This type of infinigen is presented in A145271 for general sets of binomial Sheffer polynomials. This specific infinigen is presented in analytic form in A086810. Given the column vector of row polynomials V = (P(0,t) = 1, P(1,y) = 2 t, P(2,y) = 3 t + 4 t^2, P(3,y) = 4 t + 12 t^2 + 8 t^3, ...), form the lower triangular matrix M(n,k) = V(n-k,n-k), i.e., diagonally multiply the matrix with all ones on the diagonal and below by the components of V. Form the matrix MD by multiplying A132440^Transpose = A218272 = D (representing derivation of o.g.f.s) by M, i.e., MD = M*D. The non-vanishing component of the first row of (MD)^n * V / (n+1)! is the n-th face polynomial. - Tom Copeland, Dec 11 2015
T is the convolution triangle of the positive integers starting at 2 (see A357368). - Peter Luschny, Oct 19 2022

Examples

			Triangle starts:
  1;
  0,  2;
  0,  3,   4;
  0,  4,  12,    8;
  0,  5,  25,   36,   16;
  0,  6,  44,  102,   96,    32;
  0,  7,  70,  231,  344,   240,    64;
  0,  8, 104,  456,  952,  1040,   576,   128;
  0,  9, 147,  819, 2241,  3400,  2928,  1344,   256;
  0, 10, 200, 1372, 4712,  9290, 11040,  7840,  3072,  512;
  0, 11, 264, 2178, 9108, 22363, 34332, 33488, 20224, 6912, 1024;
		

Crossrefs

Cf. A003480 (row sums), A181290.
Cf. A000297 (column 3), A006636 (column 4), A006637 (column 5).

Programs

  • Maple
    T := proc (n, k) if k <= n then sum((-1)^j*2^(k-j)*binomial(k, j)*binomial(n+k-j-1, 2*k-1), j = 0 .. k) else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n + 1); # Peter Luschny, Oct 19 2022
  • Mathematica
    Table[Sum[(-1)^j*2^(k - j) Binomial[k, j] Binomial[n + k - j - 1, 2 k - 1], {j, 0, k}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    T_xt(max_row) = {my(N=max_row+1, x='x+O('x^N), h=(1-x)^2/((1-x)^2 - t*x*(2-x))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
    T_xt(10) \\ John Tyler Rascoe, Apr 05 2025

Formula

T(n,k) = Sum_{j=0..k} (-1)^j*2^(k-j)*binomial(k,j)*binomial(n+k-j-1, 2*k-1) (0 <= k <= n).
G.f.: G(t,x) = (1-x)^2/((1-x)^2 - t*x*(2-x)).
G.f. of column k = x^k*(2-x)^k/(1-x)^{2k} (k>=1) (we have a Riordan array).
Recurrences satisfied by the numbers u_{n,k}=T(n,k) can be found in the Castiglione et al. reference.
Sum_{k=0..n} k*T(n,k) = A181290(n).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=0, T(1,1)=2, T(2,0)=0, T(1,1)=3, T(2,2)=4, T(n,k)=0, if k < 0 or if k > n. - Philippe Deléham, Nov 29 2013

A059576 Summatory Pascal triangle T(n,k) (0 <= k <= n) read by rows. Top entry is 1. Each entry is the sum of the parallelogram above it.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 8, 8, 4, 8, 20, 26, 20, 8, 16, 48, 76, 76, 48, 16, 32, 112, 208, 252, 208, 112, 32, 64, 256, 544, 768, 768, 544, 256, 64, 128, 576, 1376, 2208, 2568, 2208, 1376, 576, 128, 256, 1280, 3392, 6080, 8016, 8016, 6080, 3392, 1280, 256
Offset: 0

Views

Author

Floor van Lamoen, Jan 23 2001

Keywords

Comments

We may also relabel the entries as U(0,0), U(1,0), U(0,1), U(2,0), U(1,1), U(0,2), U(3,0), ... [That is, T(n,k) = U(n-k, k) for 0 <= k <= n and U(m,s) = T(m+s, s) for m,s >= 0.]
From Petros Hadjicostas, Jul 16 2020: (Start)
We explain the parallelogram definition of T(n,k).
T(0,0) *
|\
| \
| * T(k,k)
T(n-k,0) * |
\ |
\|
* T(n,k)
The definition implies that T(n,k) is the sum of all T(i,j) such that (i,j) has integer coordinates over the set
{(i,j): a(1,0) + b(1,1), 0 <= a <= n-k, 0 <= b <= k} - {(n,k)}.
The parallelogram can sometimes be degenerate; e.g., when k = 0 or n = k. (End)
T(n,k) is the number of 2-compositions of n having sum of the entries of the first row equal to k (0 <= k <= n). A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. - Emeric Deutsch, Oct 12 2010
From Michel Marcus and Petros Hadjicostas, Jul 16 2020: (Start)
Robeva and Sun (2020) let A(m,n) = U(m-1, n-1) be the number of subdivisions of a 2-row grid with m points on the top and n points at the bottom (and such that the lower left point is the origin).
The authors proved that A(m,n) = 2*(A(m,n-1) + A(m-1,n) - A(m-1,n-1)) for m, n >= 2 (with (m,n) <> (2,2)), which is equivalent to a similar recurrence for U(n,k) given in the Formula section below. (They did not explicitly specify the value of A(1,1) = U(0,0) because they did not care about the number of subdivisions of a degenerate polygon with only one side.)
They also proved that, for (m,n) <> (1,1), A(m,n) = (2^(m-2)/(n-1)!) * Q_n(m) =
= (2^(m-2)/(n-1)!) * Sum_{k=1..n} A336244(n,k) * m^(n-k), where Q_n(m) is a polynomial in m of degree n-1. (End)
With the square array notation of Petros Hadjicostas, Jul 16 2020 below, U(i,j) is the number of lattice paths from (0,0) to (i,j) whose steps move north or east or have positive slope. For example, representing a path by its successive lattice points rather than its steps, U(1,2) = 8 counts {(0,0),(1,2)}, {(0,0),(0,1),(1,2)}, {(0,0),(0,2),(1,2)}, {(0,0),(1,0),(1,2)}, {(0,0),(1,1),(1,2)}, {(0,0),(0,1),(0,2),(1,2)}, {(0,0),(0,1),(1,1),(1,2)}, {(0,0),(1,0),(1,1),(1,2)}. If north (vertical) steps are excluded, the resulting paths are counted by A049600. - David Callan, Nov 25 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins
[0]   1;
[1]   1,   1;
[2]   2,   3,   2;
[3]   4,   8,   8,   4;
[4]   8,  20,  26,  20,   8;
[5]  16,  48,  76,  76,  48,  16;
[6]  32, 112, 208, 252, 208, 112, 32;
  ...
T(5,2) = 76 is the sum of the elements above it in the parallelogram bordered by T(0,0), T(5-2,0) = T(3,0), T(2,2) and T(5,2). We of course exclude T(5,2) from the summation. Thus
T(5,2) = Sum_{a=0..5-2, b=0..2, (a,b) <> (5-2,2)} T(a(1,0) + b(1,1)) =
= (1 + 1 + 2) + (1 + 3 + 8) + (2 + 8 + 26) + (4 + 20) = 76. [Edited by _Petros Hadjicostas_, Jul 16 2020]
From _Petros Hadjicostas_, Jul 16 2020: (Start)
Square array U(n,k) (with rows n >= 0 and columns k >= 0) begins
   1,   1,   2,    4,    8, ...
   1,   3,   8,   20,   48, ...
   2,   8,  26,   76,  208, ...
   4,  20,  76,  252,  768, ...
   8,  48, 208,  768, 2568, ...
  16, 112, 544, 2208, 8016, ...
  ...
Consider the following 2-row grid with n = 3 points at the top and k = 2 points at the bottom:
   A  B  C
   *--*--*
   |    /
   |   /
   *--*
   D  E
The sets of the dividing internal lines of the A(3,2) = U(3-1, 2-1) = 8 subdivisions of the above 2-row grid are as follows: { }, {DC}, {DB}, {EB}, {EA}, {DB, DC}, {DB, EB}, and {EA, EB}. See Robeva and Sun (2020).
These are the 2-compositions of n = 3 with sum of first row entries equal to k = 1:
[1; 2], [0,1; 2,0], [0,1; 1,1], [1,0; 0,2], [1,0; 1,1], [0,0,1; 1,1,0], [0,1,0; 1,0,1], and [1,0,0; 0,1,1]. We have T(3,2) = 8 such matrices. See _Emeric Deutsch_'s contribution above. See also Section 2 in Castiglione et al. (2007). (End)
		

Crossrefs

Programs

  • Haskell
    a059576 n k = a059576_tabl !! n !! k
    a059576_row n = a059576_tabl !! n
    a059576_tabl = [1] : map fst (iterate f ([1,1], [2,3,2])) where
       f (us, vs) = (vs, map (* 2) ws) where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (vs ++ [0]))
                          ([0] ++ us ++ [0])
    -- Reinhard Zumkeller, Dec 03 2012
    
  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function T(n,k) // T = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2022
    
  • Maple
    A059576 := proc(n,k) local b,t1; t1 := min(n+k-2,n,k); add( (-1)^b * 2^(n+k-b-2) * (n+k-b-2)! * (1/(b! * (n-b)! * (k-b)!)) * (-2 * n-2 * k+2 * k^2+b^2-3 * k * b+2 * n^2+5 * n * k-3 * n * b), b=0..t1); end;
    T := proc (n, k) if k <= n then add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) fi end proc: 1; for n to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Oct 12 2010
    T := (n, k) -> `if`(n=0, 1, 2^(n-1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := 2^(n-k-1)*n!*Hypergeometric2F1[ -k, -k, -n, -1 ] / (k!*(n-k)!); Flatten[ Table[ T[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 01 2012, after Robert Israel *)
  • SageMath
    def T(n,k): # T = A059576
        if (k==0 or k==n): return 1 if (n==0) else 2^(n-1) # A011782
        else: return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 02 2022

Formula

T(n, n-1) = A001792(n-1).
T(2*n, n) = A052141(n).
Sum_{k=0..n} T(n, k) = A003480(n).
G.f.: U(z, w) = Sum_{n >= 0, k >= 0} U(n, k)*z^n*w^k = Sum{n >= 0, k >= 0} T(n, k)*z^(n-k)*w^k = (1-z)*(1-w)/(1 - 2*w - 2*z + 2*z*w).
Maple code gives another explicit formula for U(n, k).
From Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003: (Start)
U(n,k) is the number of ways of writing the vector (n,k) as an ordered sum of vectors, equivalently, the number of paths from (0,0) to (n,k) in which steps may be taken from (i,j) to (p,q) provided (p,q) is to the right or above (i,j).
2*U(n,k) = Sum_{i <= n, j <= k} U(i,j).
U(n,k) = 2*U(n-1,k) + Sum_{i < k} U(n,i).
U(n,k) = Sum_{j=0..n+k} C(n,j-k+1)*C(k,j-n+1)*2^j. (End)
T(n, k) = 2*(T(n-1, k-1) + T(n-1, k)) - (2 - 0^(n-2))*T(n-2, k-1) for n > 1 and 1 < k < n; T(n, 0) = T(n, n) = 2*T(n-1, 0) for n > 0; and T(0, 0) = 1. - Reinhard Zumkeller, Dec 03 2004
From Emeric Deutsch, Oct 12 2010: (Start)
Sum_{k=0..n} k*T(n,k) = A181292(n).
T(n,k) = Sum_{j=0..min(k, n-k)} (-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k) for (n,k) != (0,0).
G.f.: G(t,z) = (1-z)*(1-t*z)/(1 - 2*z - 2*t*z + 2*t*z^2). (End)
U(n,k) = 0 if k < 0; else U(k,n) if k > n; else 1 if n <= 1; else 3 if n = 2 and k = 1; else 2*U(n,k-1) + 2*U(n-1,k) - 2*U(n-1,k-1). - David W. Wilson; corrected in the case k > n by Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = binomial(n,k) * 2^(n-1) * hypergeom([-k,-k], [n+1-k], 2) if n >= k >= 0 with (n,k) <> (0,0). - Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = Sum_{0 <= i+j <= n+k-1} (-1)^j*C(i+j+1, j)*C(n+i, n)*C(k+i, k). - Masato Maruoka, Dec 10 2019
T(n, k) = 2^(n - 1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2) = A059474(n, k)/2 for n >= 1. - Peter Luschny, Nov 26 2021
From G. C. Greubel, Sep 02 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A011782(n).
T(n, n-2) = 2*A049611(n-1), n >= 2.
T(n, n-3) = 4*A049612(n-2), n >= 3.
T(n, n-4) = 8*A055589(n-3), n >= 4.
T(n, n-5) = 16*A055852(n-4), n >= 5.
T(n, n-6) = 32*A055853(n-5), n >= 6.
Sum_{k=0..floor(n/2)} T(n, k) = A181306(n). (End)
Showing 1-10 of 42 results. Next