cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A058396 Expansion of ((1-x)/(1-2*x))^3.

Original entry on oeis.org

1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, 13056, 29952, 68096, 153600, 344064, 765952, 1695744, 3735552, 8192000, 17891328, 38928384, 84410368, 182452224, 393216000, 845152256, 1811939328, 3875536896, 8271167488, 17616076800
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

If X_1,X_2,...,X_n are 2-blocks of a (2n+3)-set X then, for n>=1, a(n+1) is the number of (n+2)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Equals row sums of triangle A152230. - Gary W. Adamson, Nov 29 2008
a(n) is the number of weak compositions of n with exactly 2 parts equal to 0. - Milan Janjic, Jun 27 2010
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^3; see A291000. - Clark Kimberling, Aug 24 2017

Crossrefs

Cf. A045623, A001793, A152230. A diagonal of A058395.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^3)); // G. C. Greubel, Oct 16 2018
  • Maple
    seq(coeff(series(((1-x)/(1-2*x))^3,x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    CoefficientList[ Series[(1 - x)^3/(1 - 2x)^3, {x, 0, 28}], x] (* Robert G. Wilson v, Jun 28 2005 *)
    Join[{1},LinearRecurrence[{6,-12,8},{3,9,25},40]] (* Harvey P. Dale, Oct 17 2011 *)
  • PARI
    Vec((1-x)^3/(1-2*x)^3+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = (n+2)*(n+7)*2^(n-4) for n > 0.
a(n) = Sum_{k=0..floor((n+2)/2)} C(n+2, 2k)*k(k+1)/2. - Paul Barry, May 15 2003
Binomial transform of quarter squares A002620 (without leading zeros). - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} C(n, k)*floor((k+2)^2/4). - Paul Barry, May 27 2003
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), n > 3. - Harvey P. Dale, Oct 17 2011
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 145189/525 - 1984*log(2)/5.
Sum_{n>=0} (-1)^n/a(n) = 30103/175 - 2112*log(3/2)/5. (End)
E.g.f.: (1 + exp(2*x)*(7 + 10*x + 2*x^2))/8. - Stefano Spezia, Feb 01 2025

A034007 First differences of A045891.

Original entry on oeis.org

1, 0, 2, 4, 9, 20, 44, 96, 208, 448, 960, 2048, 4352, 9216, 19456, 40960, 86016, 180224, 376832, 786432, 1638400, 3407872, 7077888, 14680064, 30408704, 62914560, 130023424, 268435456, 553648128, 1140850688, 2348810240
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix m_(i,j) = 4 + abs(i-j) then det(M_n) = (-1)^(n+1)*a(n+2). - Benoit Cloitre, May 28 2002
Number of ordered pairs of (possibly empty) ordered partitions, each not beginning with 1. - Christian G. Bower, Jan 23 2004
If X_1, X_2, ..., X_n are 2-blocks of a (2n+4)-set X then, for n>=1, a(n+3) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S^2)^2; see A291000. - Clark Kimberling, Aug 24 2017
Conjecture 1: For compositions of n+k-1, a(n) is the number of runs of 1 of length k. Example: Among the compositions of 4+2-1 = 5, there are a(4) = 4 runs of two 1's: 3,[1,1]; [1,1],3; 1,2,[1,1] and [1,1],2,1. - Gregory L. Simay, Feb 18 2018
Conjecture 2: More generally, let R(n,m,k) = the number of runs of k m's in all compositions of n. Then R(n,m,k) = A045623(n-m*k) - 2*A045623(n-m*(k+1)) + A045623(n-m*(k+2)). For example, R(7,1,1) = A045623(6) - 2*A045623(5) + A045623(4) = 144 - 2*64 + 28 = 44 = a(7). - Gregory L. Simay, Feb 20 2018

Crossrefs

Convolution of A034008 with itself.
Columns of A091613 converge to this sequence.

Programs

Formula

a(n) = Sum_{k = 0..n-3} (k+4)*binomial(n-3,k) for n >= 3. - N. J. A. Sloane, Jan 30 2008
a(n) = (n+5)*2^(n-4), n >= 3; a(0)=1, a(1)=0, a(2)=2.
G.f.: ((1-x)^2/(1-2*x))^2.
a(n) = Sum_{k=0..n} (k+1)*C(n-3,n-k). - Peter Luschny, Apr 20 2015
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=2} 1/a(n) = 512*log(2) - 74327/210.
Sum_{n>=2} (-1)^n/a(n) = 14579/70 - 512*log(3/2). (End)
E.g.f.: (1/16)*(11 - 12*x + 2*x^2 + (5+2*x)*exp(2*x)). - G. C. Greubel, Sep 27 2022

A139761 a(n) = Sum_{k >= 0} binomial(n,5*k+4).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 70, 127, 220, 385, 715, 1430, 3004, 6385, 13380, 27370, 54740, 107883, 211585, 416405, 826045, 1652090, 3321891, 6690150, 13455325, 26985675, 53971350, 107746282, 214978335, 429124630, 857417220, 1714834440, 3431847189
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2008

Keywords

Comments

Sequence is identical to its fifth differences. - Paul Curtz, Jun 18 2008
{A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see [Erdelyi] and the Shevelev link. - Vladimir Shevelev, Jun 28 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^5; see A291000. - Clark Kimberling, Aug 24 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Magma
    I:=[0,0,0,0,1]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 21 2015
    
  • Maple
    a:= n-> (Matrix(5, (i, j)-> `if`((j-i) mod 5 in [0, 1], 1, 0))^n)[2, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2015
  • Mathematica
    CoefficientList[Series[x^4/((1-2x)(x^4-2x^3+4x^2-3x+1)), {x,0,40}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    LinearRecurrence[{5,-10,10,-5,2}, {0,0,0,0,1}, 35] (* Jean-François Alcover, Feb 14 2018 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n,5*k+4)); \\ Michel Marcus, Dec 21 2015
    
  • PARI
    my(x='x+O('x^100)); concat([0,0,0,0], Vec(-x^4/((2*x-1)*(x^4-2*x^3 +4*x^2-3*x+1)))) \\ Altug Alkan, Dec 21 2015
    
  • SageMath
    def A139761(n): return sum(binomial(n,5*k+4) for k in range(1+n//5))
    [A139761(n) for n in range(41)] # G. C. Greubel, Jan 23 2023

Formula

a(n) = A049016(n-4). - R. J. Mathar, Nov 08 2010
From Paul Curtz, Jun 18 2008: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 2*a(n-5).
a(n) = A139398(n+1) - A139398(n). (End)
G.f.: x^4/((1-2*x)*(1-3*x+4*x^2-2*x^3+x^4)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*(n-8)/5))), where phi is the golden ratio, round(x) is the integer nearest to x. - Vladimir Shevelev, Jun 28 2017
a(n+m) = a(n)*H_1(m) + H_4(n)*H_2(m) + H_3(n)*H_3(m) + H_2(n)*H_4(m) + H_1(n)*a(m), where H_1=A139398, H_2=A133476, H_3=A139714, H_4=A139748. - Vladimir Shevelev, Jun 28 2017

A062109 Expansion of ((1-x)/(1-2*x))^4.

Original entry on oeis.org

1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, 39680, 96256, 230656, 546816, 1284096, 2990080, 6909952, 15859712, 36175872, 82051072, 185139200, 415760384, 929562624, 2069889024, 4591714304, 10150215680, 22364028928, 49123688448, 107592286208, 235015241728, 512040632320
Offset: 0

Views

Author

Henry Bottomley, May 30 2001

Keywords

Comments

If X_1,X_2,...,X_n are 2-blocks of a (2n+4)-set X then, for n >= 1, a(n+1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 23 2007
If the offset here is set to zero, the binomial transform of A006918. - R. J. Mathar, Jun 29 2009
a(n) is the number of weak compositions of n with exactly 3 parts equal to 0. - Milan Janjic, Jun 27 2010
Binomial transform of A002623. - Carl Najafi, Jan 22 2013
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^4; see A291000. - Clark Kimberling, Aug 24 2017

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^4)); // G. C. Greubel, Oct 16 2018
  • Maple
    seq(coeff(series(((1-x)/(1-2*x))^4, x,n+1),x,n),n=0..30); # Muniru A Asiru, Jul 01 2018
  • Mathematica
    CoefficientList[Series[(1 - x)^4/(1 - 2 x)^4, {x, 0, 26}], x] (* Michael De Vlieger, Jul 01 2018 *)
    LinearRecurrence[{8,-24,32,-16},{1,4,14,44,129},30] (* Harvey P. Dale, Sep 02 2022 *)
  • PARI
    a(n)=if(n<1,n==0,(n+5)*(n^2+13*n+18)*2^n/96)
    

Formula

a(n) = (n+5)*(n^2 + 13*n + 18)*2^(n-5)/3, with a(0)=1.
a(n) = A055809(n-5)*2^(n-4).
a(n) = 2*a(n-1) + A058396(n) - A058396(n-1).
a(n) = Sum_{kA058396(n).
a(n) = A062110(4, n).
G.f.: (1-x)^4/(1-2*x)^4.

A169792 Expansion of ((1-x)/(1-2x))^5.

Original entry on oeis.org

1, 5, 20, 70, 225, 681, 1970, 5500, 14920, 39520, 102592, 261760, 657920, 1632000, 4001280, 9708544, 23336960, 55623680, 131563520, 309002240, 721092608, 1672806400, 3859415040, 8859156480, 20240138240, 46038777856, 104291368960, 235342397440, 529153392640
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2010

Keywords

Comments

a(n) is the number of weak compositions of n with exactly 4 parts equal to 0. - Milan Janjic, Jun 27 2010
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^5; see A291000. - Clark Kimberling, Aug 24 2017

Crossrefs

((1-x)/(1-2x))^k: A011782, A045623, A058396, A062109, A169792-A169797; a row of A160232.

Programs

  • GAP
    Concatenation([1],List([1..30],n->2^n*(n+4)*(n^3+26*n^2+171*n+186)/768)); # Muniru A Asiru, Aug 22 2018
  • Maple
    seq(coeff(series(((1-x)/(1-2*x))^5, x,n+1),x,n),n=0..30); # Muniru A Asiru, Aug 22 2018
  • Mathematica
    CoefficientList[Series[((1 - x)/(1 - 2 x))^5, {x, 0, 28}], x] (* Michael De Vlieger, Oct 15 2018 *)
  • PARI
    Vec(((1-x)/(1-2*x))^5+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = 10*a(n-1) - 40*a(n-2) + 80*a(n-3) - 80*a(n-4) + 32*a(n-5), n >= 6. - Vincenzo Librandi, Mar 14 2011
a(n) = 2^n*(n+4)*(n^3 + 26*n^2 + 171*n + 186)/768, n > 0. - R. J. Mathar, Mar 14 2011

A290995 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3432, 6436, 11456, 19584, 32640, 54264, 93024, 170544, 341088, 735472, 1653632, 3749760, 8386560, 18289440, 38724480, 79594560, 159189120, 311058496, 597137408, 1133991936, 2147450880, 4089171840
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), this sequence (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/((1-x)^8 - x^8) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^8;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290995 *)
  • PARI
    concat(vector(7), Vec(x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)) + O(x^50))) \\ Colin Barker, Aug 22 2017
    
  • SageMath
    def A290995_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^7/((1-x)^8 - x^8) ).list()
    A290995_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) for n >= 9.
G.f.: x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)). - Colin Barker, Aug 22 2017
G.f.: x^7/((1-x)^8 - x^8). - G. C. Greubel, Apr 11 2023

A120926 Number of isolated 0's in all ternary words of length n on {0,1,2}.

Original entry on oeis.org

1, 4, 16, 60, 216, 756, 2592, 8748, 29160, 96228, 314928, 1023516, 3306744, 10628820, 34012224, 108413964, 344373768, 1090516932, 3443737680, 10847773692, 34093003032, 106928054964, 334731302496, 1046035320300, 3263630199336, 10167463313316, 31632108085872
Offset: 1

Views

Author

Emeric Deutsch, Jul 16 2006

Keywords

Comments

This is essentially the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - 2 S); see A291000. - Clark Kimberling, Aug 24 2017

Examples

			a(2) = 4 because in the 9 ternary words of length 2, namely 00, 01, 02, 10, 11, 12, 20, 21 and 22, we have altogether 4 isolated 0's.
		

Crossrefs

Cf. A120924.

Programs

  • Maple
    1,seq(4*(n+1)*3^n/27,n=2..28);

Formula

a(n) = (4/27)*(n+1)*3^n for n >= 2.
G.f.: z*(1-z)^2/(1-3*z)^2.
a(n) = Sum_{k=0..ceiling(n/2)} k*A120924(n,k).

A290998 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^3 - S^4.

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 43, 92, 205, 462, 1035, 2301, 5099, 11303, 25088, 55728, 123800, 274969, 610628, 1355970, 3011157, 6686979, 14850196, 32978725, 73237462, 162641499, 361184653, 802098203, 1781254927, 3955712256, 8784625824, 19508406192, 43323176177
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
For n >= 1, a(n-1) is the number of ways to split [n] into an unspecified number of intervals and then choose 3 blocks (i.e., subintervals) from each interval. For example, for n=9, a(8)=205 since the number of ways to split [9] into intervals and then select 3 blocks from each interval is C(9,3) + C(6,3)*C(3,3) + C(5,3)*C(4,3) + C(4,3)*C(5,3) + C(3,3)*C(6,3) + C(3,3)*C(3,3)*C(3,3) for a total of 205 ways. - Enrique Navarrete, Dec 23 2023
a(n-1) is also the number of compositions of n using parts of size at least 3 where there are binomial(i,3) types of i, n>=1, i>=3 (see example). - Enrique Navarrete, Dec 25 2023

Examples

			From _Enrique Navarrete_, Dec 25 2023: (Start)
Since there are binomial(3,3) = 1 type of 3, binomial(4,3) = 4 types of 4, binomial(5,3) = 10 types of 5, binomial(6,3) = 20 types of 6, and binomial(9,3) = 84 types of 9, we can write 9 in the following ways:
 9 in 84 ways;
 6+3 in 20 ways;
 5+4 in 40 ways;
 4+5 in 40 ways;
 3+6 in 20 ways;
 3+3+3 in 1 way, for a total of 205 ways. (End)
		

Crossrefs

Programs

  • Magma
    I:=[0,0,1,4]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +5*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Apr 25 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^3 - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* this sequence *)
    LinearRecurrence[{4,-6,5,-1}, {0,0,1,4}, 41] (* G. C. Greubel, Apr 25 2023 *)
  • PARI
    concat(vector(2), Vec(x^2 / (1 - 4*x + 6*x^2 - 5*x^3 + x^4) + O(x^50))) \\ Colin Barker, Aug 22 2017
    
  • SageMath
    def A290998_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2/(1-4*x+6*x^2-5*x^3+x^4) ).list()
    A290998_list(40) # G. C. Greubel, Apr 25 2023

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - a(n-4) for n >= 5.
G.f.: x^2 / (1 - 4*x + 6*x^2 - 5*x^3 + x^4). - Colin Barker, Aug 22 2017
G.f.: 1/(x*(1-Sum_{k>=3} binomial(k,3)*x^k)) - 1/x. - Enrique Navarrete, Dec 26 2023

A169793 Expansion of ((1-x)/(1-2*x))^6.

Original entry on oeis.org

1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, 236640, 632448, 1661056, 4296192, 10961664, 27630592, 68889600, 170065920, 416071680, 1009582080, 2431254528, 5814222848, 13815054336, 32629850112, 76640681984, 179080003584, 416412598272, 963876225024
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2010

Keywords

Comments

a(n) is the number of weak compositions of n with exactly 5 parts equal to 0. - Milan Janjic, Jun 27 2010
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^6; see A291000. - Clark Kimberling, Aug 24 2017

Crossrefs

Cf. for ((1-x)/(1-2x))^k: A011782, A045623, A058396, A062109, A169792-A169797; a row of A160232.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^6)); // G. C. Greubel, Oct 16 2018
    
  • Maple
    seq(coeff(series(((1-x)/(1-2*x))^6,x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    CoefficientList[Series[((1 - x)/(1 - 2 x))^6, {x, 0, 27}], x] (* Michael De Vlieger, Oct 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(((1-x)/(1-2*x))^6) \\ G. C. Greubel, Oct 16 2018

Formula

G.f.: ((1-x)/(1-2*x))^6.
For n > 0, a(n) = 2^(n-9)*(n+7)*(n^4 + 38*n^3 + 419*n^2 + 1342*n + 1080)/15. - Bruno Berselli, Aug 07 2011

A175658 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2*Pell(n+1)+2*Pell(n)-2^n, with Pell = A000129.

Original entry on oeis.org

1, 4, 10, 26, 66, 166, 414, 1026, 2530, 6214, 15214, 37154, 90546, 220294, 535230, 1298946, 3149506, 7630726, 18476494, 44714786, 108168210, 261575494, 632367774, 1528408194, 3693378466, 8923553734, 21557263150, 52071634466
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 24 A[5] vectors with decimal values 23, 29, 53, 83, 86, 89, 92, 113, 116, 149, 209, 212, 275, 278, 281, 284, 305, 308, 338, 344, 368, 401, 404 and 464. These vectors lead for the side squares to A000079 and for the corner squares to 2*A094723 (a(n)=2*Pell(n+1)-2^n).
From Clark Kimberling, Aug 23 2017 (Start)
p-INVERT of (1,1,1,....), where p(S) = 1-S-2*S^2+2*S^3.
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A291000 for a guide to related sequences. (End)

Crossrefs

Cf. A175654, A175655 (central square).
Cf. A000129 (Pell(n)), A078057 (Pell(n)+Pell(n+1)), A094723 (Pell(n+2)-2^n).

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 21 2013
    
  • Maple
    nmax:=27; m:=5; A[5]:= [0,0,0,0,1,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{4,-3,-2},{1,4,10},30] (* Harvey P. Dale, Jun 18 2013 *)
    CoefficientList[Series[(1 - 3 x^2) / (1 - 4 x + 3 x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
  • PARI
    Vec((1 - 3*x^2) / ((1 - 2*x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Aug 29 2017

Formula

G.f.: ( 1-3*x^2 ) / ( (2*x-1)*(x^2+2*x-1) ).
a(n) = 4*a(n-1)-3*a(n-2)-2*a(n-3) with a(0)=1, a(1)=4 and a(2)=10.
Limit_{n->oo} a(n+1)/a(n) = 1+sqrt(2).
a(n) = (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n) - 2^n. - Colin Barker, Aug 29 2017
Previous Showing 11-20 of 56 results. Next