A321453
Numbers that cannot be factored into two or more factors all having the same sum of prime indices.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 85
Offset: 1
The sequence of all integer partitions that cannot be partitioned into two or more blocks with equal sums begins: (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (221), (8), (311), (42), (51), (9), (2111), (61), (411).
Cf.
A056239,
A112798,
A276024,
A279787,
A305551,
A306017,
A317144,
A320322,
A321451,
A321452,
A321454.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],Select[facs[#],And[Length[#]>1,SameQ@@hwt/@#]&]=={}&]
A371795
Number of non-biquanimous integer partitions of n.
Original entry on oeis.org
0, 1, 1, 3, 2, 7, 5, 15, 8, 30, 17, 56, 24, 101, 46, 176, 64, 297, 107, 490, 147, 792, 242, 1255, 302, 1958, 488, 3010, 629, 4565, 922, 6842, 1172, 10143, 1745, 14883, 2108, 21637, 3104, 31185, 3737, 44583, 5232, 63261, 6419, 89134, 8988, 124754, 10390, 173525
Offset: 0
The a(1) = 1 through a(8) = 8 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (31) (32) (42) (43) (53)
(111) (41) (51) (52) (62)
(221) (222) (61) (71)
(311) (411) (322) (332)
(2111) (331) (521)
(11111) (421) (611)
(511) (5111)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
These partitions have ranks
A371731.
A371781 lists numbers with biquanimous prime signature, complement
A371782.
A371783 counts k-quanimous partitions.
Cf.
A035470,
A064914,
A305551,
A336137,
A365543,
A365661,
A365663,
A366320,
A365925,
A367094,
A371788.
-
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
Table[Length[Select[IntegerPartitions[n],Not@*biqQ]],{n,0,15}]
-
a(n) = if(n%2, numbpart(n), my(v=partitions(n/2), w=List([])); for(i=1, #v, for(j=1, i, listput(w, vecsort(concat(v[i], v[j]))))); numbpart(n)-#Set(w)); \\ Jinyuan Wang, Feb 13 2025
A320325
Numbers whose product of prime indices is a perfect power.
Original entry on oeis.org
7, 9, 14, 18, 19, 21, 23, 25, 27, 28, 36, 38, 42, 46, 49, 50, 53, 54, 56, 57, 63, 72, 76, 81, 84, 92, 97, 98, 100, 103, 106, 108, 112, 114, 115, 121, 125, 126, 131, 133, 144, 147, 151, 152, 159, 161, 162, 168, 169, 171, 175, 183, 184, 185, 189, 194, 195, 196
Offset: 1
The terms together with their corresponding multiset multisystems (A302242):
7: {{1,1}}
9: {{1},{1}}
14: {{},{1,1}}
18: {{},{1},{1}}
19: {{1,1,1}}
21: {{1},{1,1}}
23: {{2,2}}
25: {{2},{2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
42: {{},{1},{1,1}}
46: {{},{2,2}}
49: {{1,1},{1,1}}
50: {{},{2},{2}}
53: {{1,1,1,1}}
54: {{},{1},{1},{1}}
56: {{},{},{},{1,1}}
57: {{1},{1,1,1}}
63: {{1},{1},{1,1}}
72: {{},{},{},{1},{1}}
76: {{},{},{1,1,1}}
81: {{1},{1},{1},{1}}
Cf.
A000720,
A001222,
A001597,
A003963,
A056239,
A064573,
A112798,
A302242,
A305551,
A306017,
A319056,
A319066,
A320322,
A320323,
A320324.
-
Select[Range[100],GCD@@FactorInteger[Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]][[All,2]]>1&]
A319169
Number of integer partitions of n whose parts all have the same number of prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 7, 11, 11, 14, 15, 20, 19, 26, 27, 34, 35, 43, 45, 59, 60, 72, 77, 94, 98, 118, 125, 148, 158, 184, 198, 233, 245, 282, 308, 353, 374, 428, 464, 525, 566, 635, 686, 779, 832, 930, 1005, 1123, 1208, 1345, 1451, 1609, 1732, 1912
Offset: 0
The a(1) = 1 through a(9) = 6 integer partitions:
1 2 3 4 5 6 7 8 9
11 111 22 32 33 52 44 72
1111 11111 222 322 53 333
111111 1111111 332 522
2222 3222
11111111 111111111
Cf.
A000607,
A001222,
A003963,
A064573,
A279787,
A305551,
A319056,
A319066,
A319071,
A320322,
A320324.
-
b:= proc(n, i, f) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, f)+(o-> `if`(f in {0, o}, b(n-i, min(i, n-i),
`if`(f=0, o, f)), 0))(numtheory[bigomega](i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..75); # Alois P. Heinz, Dec 15 2018
-
Table[Length[Select[IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,30}]
(* Second program: *)
b[n_, i_, f_] := b[n, i, f] = If[n == 0, 1, If[i < 1, 0,
b[n, i-1, f] + Function[o, If[f == 0 || f == o, b[n-i, Min[i, n-i],
If[f == 0, o, f]], 0]][PrimeOmega[i]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 75] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A371794
Number of non-biquanimous strict integer partitions of n.
Original entry on oeis.org
0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 12, 11, 18, 15, 27, 23, 38, 30, 54, 43, 76, 57, 104, 79, 142, 102, 192, 138, 256, 174, 340, 232, 448, 292, 585, 375, 760, 471, 982, 602, 1260, 741, 1610, 935, 2048, 1148, 2590, 1425, 3264, 1733, 4097, 2137, 5120, 2571, 6378
Offset: 0
The a(1) = 1 through a(11) = 12 strict partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(21) (31) (32) (42) (43) (53) (54) (64) (65)
(41) (51) (52) (62) (63) (73) (74)
(61) (71) (72) (82) (83)
(421) (521) (81) (91) (92)
(432) (631) (A1)
(531) (721) (542)
(621) (632)
(641)
(731)
(821)
(5321)
A371781 lists numbers with biquanimous prime signature, complement
A371782.
A371783 counts k-quanimous partitions.
Cf.
A064914,
A279787,
A305551,
A318434,
A365543,
A365663,
A365661,
A366320,
A365925,
A367094,
A371788.
-
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!biqQ[#]&]],{n,0,30}]
A336127
Number of ways to split a composition of n into contiguous subsequences with different sums.
Original entry on oeis.org
1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
Offset: 0
The a(0) = 1 through a(4) = 16 splits:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(1),(2) (1,1,2)
(2),(1) (1,2,1)
(1),(1,1) (1),(3)
(1,1),(1) (2,1,1)
(3),(1)
(1,1,1,1)
(1),(1,2)
(1),(2,1)
(1,2),(1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
The version with equal instead of different sums is
A074854.
Starting with a strict composition gives
A336128.
Starting with a partition gives
A336131.
Starting with a strict partition gives
A336132
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Compositions of partitions are
A323583.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}]
A336128
Number of ways to split a strict composition of n into contiguous subsequences with different sums.
Original entry on oeis.org
1, 1, 1, 5, 5, 9, 29, 37, 57, 89, 265, 309, 521, 745, 1129, 3005, 3545, 5685, 8201, 12265, 16629, 41369, 48109, 77265, 107645, 160681, 214861, 316913, 644837, 798861, 1207445, 1694269, 2437689, 3326705, 4710397, 6270513, 12246521, 14853625, 22244569, 30308033, 43706705, 57926577, 82166105, 107873221, 148081785, 257989961, 320873065, 458994657, 628016225, 875485585, 1165065733
Offset: 0
The a(0) = 1 through a(5) = 5 splits:
() (1) (2) (3) (4) (5)
(12) (13) (14)
(21) (31) (23)
(1)(2) (1)(3) (32)
(2)(1) (3)(1) (41)
(1)(4)
(2)(3)
(3)(2)
(4)(1)
The a(6) = 29 splits:
(6) (1)(5) (1)(2)(3)
(15) (2)(4) (1)(3)(2)
(24) (4)(2) (2)(1)(3)
(42) (5)(1) (2)(3)(1)
(51) (1)(23) (3)(1)(2)
(123) (1)(32) (3)(2)(1)
(132) (13)(2)
(213) (2)(13)
(231) (2)(31)
(312) (23)(1)
(321) (31)(2)
(32)(1)
The version with equal instead of different sums is
A336130.
Starting with a non-strict composition gives
A336127.
Starting with a partition gives
A336131.
Starting with a strict partition gives
A336132.
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Set partitions with distinct block-sums are
A275780.
Compositions of partitions are
A323583.
Cf.
A006951,
A063834,
A271619,
A279375,
A305551,
A326519,
A317508,
A318684,
A336133,
A336134,
A336135.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]
A336130
Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
Offset: 0
The a(1) = 1 through a(7) = 13 splits:
(1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(1,3,2) (6,1)
(2,1,3) (1,2,4)
(2,3,1) (1,4,2)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(1,2),(3) (4,1,2)
(2,1),(3) (4,2,1)
(3),(1,2)
(3),(2,1)
The version with different instead of equal sums is
A336128.
Starting with a non-strict composition gives
A074854.
Starting with a partition gives
A317715.
Starting with a strict partition gives
A318683.
Set partitions with equal block-sums are
A035470.
Partitions of partitions are
A001970.
Partitions of compositions are
A075900.
Compositions of compositions are
A133494.
Compositions of partitions are
A323583.
Cf.
A006951,
A063834,
A271619,
A279375,
A305551,
A317508,
A318684,
A326519,
A336127,
A336132,
A336134,
A336135.
-
splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]
A371737
Number of quanimous strict integer partitions of n, meaning there is more than one set partition with all equal block-sums.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 4, 0, 7, 1, 9, 0, 16, 0, 21, 4, 32, 0, 45, 0, 63, 13, 84, 0, 126, 0, 158, 36, 220, 0, 303, 0, 393, 93, 511, 0, 708, 0, 881, 229, 1156, 0, 1539, 0, 1925, 516, 2445, 0, 3233, 6, 3952, 1134, 5019, 0, 6497
Offset: 0
The a(0) = 0 through a(14) = 7 strict partitions:
. . . . . . (321) . (431) . (532) . (642) . (743)
(541) (651) (752)
(4321) (5421) (761)
(6321) (5432)
(6431)
(6521)
(7421)
A371783 counts k-quanimous partitions.
Cf.
A000005,
A018818,
A035470,
A038041,
A064688,
A232466,
A237194,
A305551,
A365663,
A365661,
A365925,
A371733,
A371839.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Select[sps[#], SameQ@@Total/@#&]]>1&]],{n,0,30}]
A074854
a(n) = Sum_{d|n} (2^(n-d)).
Original entry on oeis.org
1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
Offset: 1
Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
The version looking at lengths instead of sums is
A101509.
The strictly increasing (or strictly decreasing) version is
A304961.
Starting with a partition gives
A317715.
Starting with a strict partition gives
A318683.
Requiring distinct instead of equal sums gives
A336127.
Starting with a strict composition gives
A336130.
Partitions of partitions are
A001970.
Splittings of compositions are
A133494.
Splittings of partitions are
A323583.
-
a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
-
a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
-
a(n) = sumdiv(n,d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */
a(14) corrected from 9407 to 12417 by
Gus Wiseman, Jun 20 2018
Comments