cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A112141 Product of the first n semiprimes.

Original entry on oeis.org

4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2005

Keywords

Comments

Semiprime analog of primorial (A002110). Equivalent for product of what A062198 is for sum.

Examples

			a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime signatures begins:
                        4: (2)
                       24: (3,1)
                      216: (3,3)
                     2160: (4,3,1)
                    30240: (5,3,1,1)
                   453600: (5,4,2,1)
                  9525600: (5,5,2,2)
                209563200: (6,5,2,2,1)
               5239080000: (6,5,4,2,1)
             136216080000: (7,5,4,2,1,1)
            4495130640000: (7,6,4,2,2,1)
          152834441760000: (8,6,4,2,2,1,1)
         5349205461600000: (8,6,5,3,2,1,1)
       203269807540800000: (9,6,5,3,2,1,1,1)
      7927522494091200000: (9,7,5,3,2,2,1,1)
    364666034728195200000: (10,7,5,3,2,2,1,1,1)
  17868635701681564800000: (10,7,5,5,2,2,1,1,1)
(End)
		

Crossrefs

Partial sums of semiprimes are A062198.
First differences of semiprimes are A065516.
A000040 lists primes, with partial products A002110 (primorials).
A000142 lists factorials, with partial products A000178 (superfactorials).
A001358 lists semiprimes, with partial products A112141 (this sequence).
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial products A339191.
A101048 counts partitions into semiprimes (restricted: A338902).
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    A112141 := proc(n)
        mul(A001358(i),i=1..n) ;
    end proc:
    seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *)
    FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
  • PARI
    a(n)=my(v=vector(n),i,k=3);while(iCharles R Greathouse IV, Apr 04 2013
    
  • Python
    from sympy import factorint
    def aupton(terms):
        alst, k, p = [], 1, 1
        while len(alst) < terms:
            if sum(factorint(k).values()) == 2:
                p *= k
                alst.append(p)
            k += 1
        return alst
    print(aupton(18)) # Michael S. Branicky, Aug 31 2021

Formula

a(n) = Product_{i=1..n} A001358(i).
A001222(a(n)) = 2*n.

A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 6, 8, 12, 16, 21, 28, 37, 49, 64, 80, 104, 135, 169, 216, 268, 341, 420, 527, 654, 809, 991, 1218, 1488, 1828, 2213, 2687, 3262, 3934, 4754, 5702, 6849, 8200, 9819, 11693, 13937, 16562, 19659, 23262, 27577, 32493, 38341, 45112, 53059, 62265
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a loop-graphical partition (A339656, A339658).

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (11)  (21)  (22)  (32)    (33)    (43)    (44)    (54)      (55)
              (31)  (41)    (42)    (52)    (53)    (63)      (64)
                    (2111)  (51)    (61)    (62)    (72)      (73)
                            (2211)  (2221)  (71)    (81)      (82)
                            (3111)  (3211)  (3221)  (3222)    (91)
                                    (4111)  (3311)  (3321)    (3322)
                                            (4211)  (4221)    (3331)
                                            (5111)  (4311)    (4222)
                                                    (5211)    (4321)
                                                    (6111)    (4411)
                                                    (222111)  (5221)
                                                    (321111)  (5311)
                                                              (6211)
                                                              (7111)
                                                              (322111)
                                                              (421111)
For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
		

Crossrefs

A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]

Formula

A027187(n) = a(n) + A338915(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339655 Number of non-loop-graphical integer partitions of 2n.

Original entry on oeis.org

0, 0, 1, 3, 7, 14, 28, 51, 91, 156, 260, 425, 680, 1068, 1654, 2524, 3802, 5668, 8350, 12190, 17634, 25306, 36011, 50902, 71441, 99642
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2020

Keywords

Comments

An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with equal source and target. See A339657 for the Heinz numbers, and A339656 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The a(2) = 1 through a(5) = 14 partitions (A = 10):
  (4)  (6)    (8)      (A)
       (4,2)  (4,4)    (5,5)
       (5,1)  (5,3)    (6,4)
              (6,2)    (7,3)
              (7,1)    (8,2)
              (5,2,1)  (9,1)
              (6,1,1)  (5,3,2)
                       (5,4,1)
                       (6,2,2)
                       (6,3,1)
                       (7,2,1)
                       (8,1,1)
                       (6,2,1,1)
                       (7,1,1,1)
For example, the seven normal loop-multigraphs with degrees y = (5,3,2) are:
  {{1,1},{1,1},{1,2},{2,2},{3,3}}
  {{1,1},{1,1},{1,2},{2,3},{2,3}}
  {{1,1},{1,1},{1,3},{2,2},{2,3}}
  {{1,1},{1,2},{1,2},{1,2},{3,3}}
  {{1,1},{1,2},{1,2},{1,3},{2,3}}
  {{1,1},{1,2},{1,3},{1,3},{2,2}}
  {{1,2},{1,2},{1,2},{1,3},{1,3}},
but since none of these is a loop-graph (because they are not strict), y is counted under a(5).
		

Crossrefs

A001358 lists semiprimes, with squarefree case A006881.
A006125 counts labeled graphs, with covering case A006129.
A062740 counts labeled connected loop-graphs.
A101048 counts partitions into semiprimes.
A320461 ranks normal loop-graphs.
A322661 counts covering loop-graphs.
A320655 counts factorizations into semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 (this sequence) counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

A058696(n) = a(n) + A339656(n).

Extensions

a(7)-a(25) from Andrew Howroyd, Jan 10 2024

A339658 Heinz numbers of loop-graphical partitions (of even numbers).

Original entry on oeis.org

1, 3, 4, 9, 10, 12, 16, 25, 27, 28, 30, 36, 40, 48, 63, 64, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 147, 160, 175, 189, 192, 196, 198, 208, 210, 220, 225, 243, 250, 252, 256, 264, 270, 280, 300, 324, 336, 343, 352, 360, 400, 432, 441, 448, 462, 468, 480
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320912.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms > 1 together with their prime indices begins:
      3: {2}               70: {1,3,4}          192: {1,1,1,1,1,1,2}
      4: {1,1}             75: {2,3,3}          196: {1,1,4,4}
      9: {2,2}             81: {2,2,2,2}        198: {1,2,2,5}
     10: {1,3}             84: {1,1,2,4}        208: {1,1,1,1,6}
     12: {1,1,2}           88: {1,1,1,5}        210: {1,2,3,4}
     16: {1,1,1,1}         90: {1,2,2,3}        220: {1,1,3,5}
     25: {3,3}            100: {1,1,3,3}        225: {2,2,3,3}
     27: {2,2,2}          108: {1,1,2,2,2}      243: {2,2,2,2,2}
     28: {1,1,4}          112: {1,1,1,1,4}      250: {1,3,3,3}
     30: {1,2,3}          120: {1,1,1,2,3}      252: {1,1,2,2,4}
     36: {1,1,2,2}        144: {1,1,1,1,2,2}    256: {1,1,1,1,1,1,1,1}
     40: {1,1,1,3}        147: {2,4,4}          264: {1,1,1,2,5}
     48: {1,1,1,1,2}      160: {1,1,1,1,1,3}    270: {1,2,2,2,3}
     63: {2,2,4}          175: {3,3,4}          280: {1,1,1,3,4}
     64: {1,1,1,1,1,1}    189: {2,2,2,4}        300: {1,1,2,3,3}
For example, the four loop-graphs with degrees y = (3,1,1,1) are:
  {{1,1},{1,2},{3,4}}
  {{1,1},{1,3},{2,4}}
  {{1,1},{1,4},{2,3}}
  {{1,2},{1,3},{1,4}},
so the Heinz number 40 is in the sequence. On the other hand, the three loop-multigraphs with degrees y = (4,4) are
  {{1,1},{1,1},{2,2},{2,2}}
  {{1,1},{1,2},{1,2},{2,2}}
  {{1,2},{1,2},{1,2},{1,2}},
but none of these is a loop-graph, so the Heinz number 49 is not in the sequence.
		

Crossrefs

A320912 has these prime shadows (see A181819).
A339656 counts these partitions.
A339657 ranks the complement, counted by A339655.
A001358 lists semiprimes, with squarefree case A006881.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A338914 can be partitioned into strict pairs (A320911).
- A338916 can be partitioned into distinct pairs (A320912).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[25],Select[mpsbin[nrmptn[#]],UnsameQ@@#&]!={}&]

Formula

A339657 Heinz numbers of non-loop-graphical partitions of even numbers.

Original entry on oeis.org

7, 13, 19, 21, 22, 29, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 154, 155, 156, 159, 163, 165, 166, 169, 171
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320892.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656, with Heinz numbers A339658.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
      7: {4}         57: {2,8}      107: {28}
     13: {6}         61: {18}       111: {2,12}
     19: {8}         62: {1,11}     113: {30}
     21: {2,4}       66: {1,2,5}    115: {3,9}
     22: {1,5}       71: {20}       116: {1,1,10}
     29: {10}        76: {1,1,8}    117: {2,2,6}
     34: {1,7}       79: {22}       118: {1,17}
     37: {12}        82: {1,13}     121: {5,5}
     39: {2,6}       85: {3,7}      129: {2,14}
     43: {14}        87: {2,10}     130: {1,3,6}
     46: {1,9}       89: {24}       131: {32}
     49: {4,4}       91: {4,6}      133: {4,8}
     52: {1,1,6}     94: {1,15}     134: {1,19}
     53: {16}       101: {26}       136: {1,1,1,7}
     55: {3,5}      102: {1,2,7}    138: {1,2,9}
For example, the three loop-multigraphs with degrees y = (5,2,1) are:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a loop-graph (they have multiple edges), the Heinz number 66 is in the sequence.
		

Crossrefs

A320892 has these prime shadows (see A181819).
A321728 is conjectured to be the version for half-loops {x} instead of loops {x,x}.
A339655 counts these partitions.
A339658 ranks the complement, counted by A339656.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339844 counts loop-graphical partitions by length.
factorizations of n into distinct primes or squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657 [this sequence]).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[50],EvenQ[Length[nrmptn[#]]]&&Select[mpsbin[nrmptn[#]],UnsameQ@@#&]=={}&]

Formula

A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2018

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - Gus Wiseman, Dec 31 2020
Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ...

Examples

			a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480:
  4*15   6*35    4*6*35    4*9*35    4*15*77    4*6*15*35    4*6*10*77
  6*10   10*21   4*10*21   4*15*21   4*21*55    4*6*21*25    4*6*14*55
         14*15   4*14*15   6*10*21   4*33*35    4*9*10*35    4*6*22*35
                 6*10*14   6*14*15   6*10*77    4*9*14*25    4*10*14*33
                           9*10*14   6*14*55    4*10*15*21   4*10*21*22
                                     6*22*35    6*10*14*15   4*14*15*22
                                     10*14*33                6*10*14*22
                                     10*21*22
                                     14*15*22
(End)
		

Crossrefs

Unlabeled multiset partitions of this type are counted by A007717.
The version for partitions is A112020, or A101048 without distinctness.
The non-strict version is A320655.
Positions of zeros include A320892.
Positions of nonzero terms are A320912.
The case of squarefree factors is A339661, or A320656 without distinctness.
Allowing prime factors gives A339839, or A320732 without distinctness.
A322661 counts loop-graphs, ranked by A320461.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A037143 lists primes and semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A339846 counts even-length factorizations, with ordered version A174725.

Programs

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - Gus Wiseman, Dec 31 2020

A338910 Numbers of the form prime(x) * prime(y) where x and y are both odd.

Original entry on oeis.org

4, 10, 22, 25, 34, 46, 55, 62, 82, 85, 94, 115, 118, 121, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 289, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 529, 538, 545, 554
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}     146: {1,21}    314: {1,37}
     10: {1,3}     155: {3,11}    334: {1,39}
     22: {1,5}     166: {1,23}    335: {3,19}
     25: {3,3}     187: {5,7}     341: {5,11}
     34: {1,7}     194: {1,25}    358: {1,41}
     46: {1,9}     205: {3,13}    365: {3,21}
     55: {3,5}     206: {1,27}    382: {1,43}
     62: {1,11}    218: {1,29}    391: {7,9}
     82: {1,13}    235: {3,15}    394: {1,45}
     85: {3,7}     253: {5,9}     415: {3,23}
     94: {1,15}    254: {1,31}    422: {1,47}
    115: {3,9}     274: {1,33}    451: {5,13}
    118: {1,17}    289: {7,7}     454: {1,49}
    121: {5,5}     295: {3,17}    466: {1,51}
    134: {1,19}    298: {1,35}    482: {1,53}
		

Crossrefs

A338911 is the even instead of odd version.
A339003 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338906/A338907 are semiprimes of even/odd weight.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give prime indices of squarefree semiprimes.
A338909 lists semiprimes with non-relatively prime indices.

Programs

  • Maple
    q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
        numtheory[pi](i[1])::odd, l))(ifactors(n)[2]):
    select(q, [$1..1000])[];  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338910(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001222(m) = A195017(m) = 2. - Peter Munn, Jan 17 2021

A338911 Numbers of the form prime(x) * prime(y) where x and y are both even.

Original entry on oeis.org

9, 21, 39, 49, 57, 87, 91, 111, 129, 133, 159, 169, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 361, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}     237: {2,22}    481: {6,12}
     21: {2,4}     247: {6,8}     489: {2,38}
     39: {2,6}     259: {4,12}    497: {4,20}
     49: {4,4}     267: {2,24}    519: {2,40}
     57: {2,8}     301: {4,14}    543: {2,42}
     87: {2,10}    303: {2,26}    551: {8,10}
     91: {4,6}     321: {2,28}    553: {4,22}
    111: {2,12}    339: {2,30}    559: {6,14}
    129: {2,14}    361: {8,8}     579: {2,44}
    133: {4,8}     371: {4,16}    597: {2,46}
    159: {2,16}    377: {6,10}    623: {4,24}
    169: {6,6}     393: {2,32}    669: {2,48}
    183: {2,18}    417: {2,34}    687: {2,50}
    203: {4,10}    427: {4,18}    689: {6,16}
    213: {2,20}    453: {2,36}    703: {8,12}
		

Crossrefs

A338910 is the odd instead of even version.
A339004 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A338899, A270650, A270652 list prime indices of squarefree semiprimes.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338906/A338907 list semiprimes of even/odd weight.
A338909 lists semiprimes with non-relatively prime indices.
A338912 and A338913 list prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.

Programs

  • Maple
    q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
        numtheory[pi](i[1])::even, l))(ifactors(n)[2]):
    select(q, [$1..1000])[];  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • Python
    from math import isqrt
    from sympy import primerange, primepi
    def A338911(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001222(m) = 2 and A195017(m) = -2. - Peter Munn, Jan 17 2021

A339742 Number of factorizations of n into distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 3, 2, 2, 2, 0, 1, 3, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 4, 1, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes.

Examples

			The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9:
  (6)    (5*6)    (6*10)    (6*35)     (2*6*35)
  (2*3)  (2*15)   (2*5*6)   (10*21)    (5*6*14)
         (3*10)   (2*3*10)  (14*15)    (6*7*10)
         (2*3*5)            (5*6*7)    (2*10*21)
                            (2*3*35)   (2*14*15)
                            (2*5*21)   (2*5*6*7)
                            (2*7*15)   (3*10*14)
                            (3*5*14)   (2*3*5*14)
                            (3*7*10)   (2*3*7*10)
                            (2*3*5*7)
		

Crossrefs

Dirichlet convolution of A008966 with A339661.
A008966 allows only primes.
A339661 does not allow primes, only squarefree semiprimes.
A339740 lists the positions of zeros.
A339741 lists the positions of positive terms.
A339839 allows nonsquarefree semiprimes.
A339887 is the non-strict version.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339840 cannot be factored into distinct primes or semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050320 into squarefree numbers.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339742 [this sequence] into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A058696 counts all partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A339656 counts loop-graphical partitions (A339658).
-
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 has no additional conditions (A028260).
- A338914/A339562 can be partitioned into edges (A320911).
- A338916/A339563 can be partitioned into distinct pairs (A320912).
- A339559/A339564 cannot be partitioned into distinct edges (A320894).
- A339560/A339619 can be partitioned into distinct edges (A339561).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqps[n]],{n,100}]
  • PARI
    A353471(n) = (numdiv(n)==2*omega(n));
    A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA353471(d), s += A339742(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n squarefree} A339661(n/d).

Extensions

More terms from Antti Karttunen, May 02 2022

A338903 Number of integer partitions of the n-th squarefree semiprime into squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 6, 5, 12, 14, 19, 22, 27, 36, 38, 51, 77, 86, 128, 141, 163, 163, 207, 233, 259, 260, 514, 657, 813, 983, 1010, 1215, 1255, 1720, 2112, 2256, 3171, 3370, 3499, 3864, 4103, 6292, 7313, 7620, 8374, 10650, 17579, 18462, 23034, 25180
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.

Examples

			The a(n) partitions for n = 1, 5, 7, 9, 10, 11, 13:
  6  21    26       34          35        38           46
     15,6  14,6,6   22,6,6      21,14     26,6,6       34,6,6
           10,10,6  14,14,6     15,14,6   22,10,6      26,14,6
                    14,10,10    15,10,10  14,14,10     21,15,10
                    10,6,6,6,6            14,6,6,6,6   22,14,10
                                          10,10,6,6,6  26,10,10
                                                       15,15,10,6
                                                       22,6,6,6,6
                                                       14,14,6,6,6
                                                       14,10,10,6,6
                                                       10,10,10,10,6
                                                       10,6,6,6,6,6,6
		

Crossrefs

A002100 counts partitions into squarefree semiprimes.
A056768 uses primes instead of squarefree semiprimes.
A101048 counts partitions into semiprimes.
A338902 is the not necessarily squarefree version.
A339113 includes the Heinz numbers of these partitions.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes, with sum/difference/product A176504/A176506/A087794.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes.

Programs

  • Mathematica
    nn=100;
    sqs=Select[Range[nn],SquareFreeQ[#]&&PrimeOmega[#]==2&];
    Table[Length[IntegerPartitions[n,All,sqs]],{n,sqs}]

Formula

a(n) = A002100(A006881(n)).
Previous Showing 11-20 of 29 results. Next