A338915 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of not necessarily distinct parts.
0, 0, 0, 0, 1, 0, 1, 1, 4, 2, 6, 6, 12, 12, 20, 22, 38, 42, 60, 73, 101, 124, 164, 203, 266, 319, 415, 507, 649, 786, 983, 1198, 1499, 1797, 2234, 2673, 3303, 3952, 4826, 5753, 6999, 8330, 10051, 11943, 14357, 16956, 20322, 23997, 28568, 33657, 39897, 46879
Offset: 0
Keywords
Examples
The a(7) = 1 through a(12) = 12 partitions: 211111 2222 411111 222211 222221 3333 221111 21111111 331111 611111 222222 311111 511111 22211111 441111 11111111 22111111 32111111 711111 31111111 41111111 22221111 1111111111 2111111111 32211111 33111111 42111111 51111111 2211111111 3111111111 111111111111 For example, the partition y = (3,2,2,1,1,1,1,1) can be partitioned into pairs in just three ways: {{1,1},{1,1},{1,2},{2,3}} {{1,1},{1,1},{1,3},{2,2}} {{1,1},{1,2},{1,2},{1,3}} None of these is strict, so y is counted under a(12).
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
Programs
-
Mathematica
smcs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[smcs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&smcs[Times@@Prime/@#]=={}&]],{n,0,10}]
Extensions
More terms from Jinyuan Wang, Feb 14 2025
Comments