A054767 Period of the sequence of Bell numbers A000110 (mod n).
1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, 25239592216021, 411771, 10153, 48, 51702516367896047761, 39, 109912203092239643840221, 9372, 1784341, 85593501183, 949112181811268728834319677753, 312, 3905, 75718776648063, 117, 1647084
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..102 (b-file based on the Wagstaff article)
- J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416-423.
- W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arithmetica 35 (1979), pp. 1-16.
- Jianing Song, A summary of several proofs in the Lunnon article.
- Samuel S. Wagstaff Jr., Aurifeuillian factorizations and the period of the Bell numbers modulo a prime, Math. Comp. 65 (1996), 383-391.
- Eric Weisstein's World of Mathematics, Bell Number.
Programs
-
Mathematica
(* Warning: this program is just a verification of the existing data and should not be used to extend the sequence beyond a(28) *) BellMod[k_, m_] := Mod[Sum[Mod[StirlingS2[k, j], m], {j, 1, k}], m]; BellMod[k_, 1] := BellB[k]; period[nn_List] := Module[{lgmin=2, lgmax=5, nn1}, lg=If[Length[nn]<=lgmax, lgmin, lgmax]; nn1 = nn[[1;;lg]]; km=Length[nn]-lg; Catch[Do[If[nn1==nn[[k;;k+lg-1]], Throw[k-1]]; If[k==km, Throw[0]], {k, 2, km}]]]; dd[n_] := SelectFirst[Table[{d, n/d}, {d, Divisors[n][[2;;-2]]}], GCD@@#==1&]; a[1]=1; a[p_?PrimeQ] := a[p] = (p^p-1)/(p-1); a[n_/;n>4 && dd[n]!={}] := With[{g = dd[n]}, LCM[a[g[[1]]], a[g[[2]]]]]; a[n_/;MemberQ[FactorInteger[n][[All, 2]], 1]] := a[n]= With[{pp = Select[FactorInteger[n], #1[[2]] ==1 &][[All, 1]]}, a[n/Times@@pp]*Times@@a/@pp]; a[n_/;n>4 && GCD @@ FactorInteger[n][[All, 2]]>1] := a[n]= With[{g=GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1-1/g)]]; a[n_] := period[Table[BellMod[k, n], {k, 1, 28}]]; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 31 2012, updated May 06 2024 *)
Formula
If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - Franklin T. Adams-Watters, Jun 06 2006
a(2^s) = 3*2^s for s >= 2 (Theorem 6.4 in the Lunnon article). For an odd prime p, if a(p) = (p^p-1)/(p-1) (which is conjectured to hold for all p), then a(p^s) = p^(s-1)*(p^p-1)/(p-1) (Theorem 6.2 in the Lunnon article). - Jianing Song, Jun 18 2025
Extensions
More information from Phil Carmody, Dec 22 2002
Extended by T. D. Noe, Dec 18 2008
a(26) corrected by Jean-François Alcover, Jul 31 2012
a(18) corrected by Charles R Greathouse IV, Jul 31 2012
a(27)-a(28) from Charles R Greathouse IV, Sep 07 2016
Comments