A000178 Superfactorials: product of first n factorials.
1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0
Examples
a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 | a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000. a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12! = 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1 = 2^56 * 3^26 * 5^11 * 7^6 * 11^2. G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
- H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.
Links
- Boris Hostnik, Table of n, a(n) for n = 0..46
- Christian Aebi and Grant Cairns, Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials, The American Mathematical Monthly 122.5 (2015): 433-443.
- Andreas B. G. Blobel, On convolution powers of 1/x, arXiv:2203.09519 [math.CO], 2022.
- E. F. Cornelius, Jr. and Phill Schultz, Polynomial points , Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6.
- Selden Crary, Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality, arXiv preprint arXiv:1406.6326 [math.ST], 2014-2019.
- N. Destainville, R. Mosseri and F. Bailly, Configurational Entropy of Codimension-One Tilings and Directed Membranes, J. Stat. Phys. 87, Nos 3/4, 697 (1997).
- J. East and R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
- Richard Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107 (2000), 557-560.
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 7.
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [Broken link]
- Steven R. Finch, Glaisher-Kinkelin Constant (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- Ivan Gutman, Wolfgang Linert, István Lukovits and Željko Tomović, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., Vol. 40, No. 1 (2000), pp. 113-116.
- Brady Haran and Sophie Maclean, What's special about 288?, Numberphile video (2023).
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Nick Hobson, Python program for this sequence.
- A. M. Ibrahim, Extension of factorial concept to negative numbers, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
- Pavel L. Krapivsky, Jean-Marc Luck and Kirone Mallick, Quantum return probability of a system of N non-interacting lattice fermions, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 2 (2018), 023104; arXiv preprint, arXiv:1710.08178 [cond-mat.mes-hall], 2017-2018.
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, International Journal of Number Theory, Vol. 12, No. 1 (2016), pp. 57-91; arXiv preprint, arXiv:1409.4145 [math.NT], 2014-2015.
- Mogens Esrom Larsen, Wronskian Harmony, Mathematics Magazine, vol. 63, no. 1, 1990, pp. 33-37.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Rick Mabry and Laura McCormick, Square products of punctured sequences of factorials, Gaz. Aust. Math. Soc., 2009.
- Rémy Mosseri and Francis Bailly, Configurational Entropy in Octagonal Tiling Models, Int. J. Mod. Phys. B, Vol. 7, No. 6-7 (1993), pp. 1427-1436.
- Rémy Mosseri, F. Bailly and C. Sire, Configurational Entropy in Random Tiling Models, J. Non-Cryst. Solids, Vol. 153-154 (1993), pp. 201-204.
- Amarnath Murthy, Miscellaneous Results and Theorems on Smarandache terms and factor partitions, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
- Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 3.14.
- Christian Radoux, Query 145, Notices Amer. Math. Soc., 25-3 (1978), p. 197.
- Christian Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
- Vignesh Raman, The Generalized Superfactorial, Hyperfactorial and Primorial functions, arXiv:2012.00882 [math.NT], 2020.
- Michel Waldschmidt, Schanuel Property for Elliptic and Quasi-Elliptic Functions, arXiv:2504.14041 [math.NT], 2025. Mentions this sequence, see p. 10.
- Eric Weisstein's World of Mathematics, Barnes G-Function.
- Eric Weisstein's World of Mathematics, Bell Number.
- Eric Weisstein's World of Mathematics, Factorial Products.
- Eric Weisstein's World of Mathematics, Graph Automorphism.
- Eric Weisstein's World of Mathematics, Lucas Sequence.
- Eric Weisstein's World of Mathematics, Superfactorial.
- Eric Weisstein's World of Mathematics, Vandermonde Determinant.
- Index to divisibility sequences.
- Index entries for sequences related to factorial numbers.
- Index to sequences related to Olympiads and other Mathematical competitions.
Crossrefs
Partial products of A000142.
Cf. A002109, A036561, A000292, A098694, A098695, A113271, A087316, A113208, A113231, A113257, A113258, A113320, A113336, A113498, A113173, A113170, A113475, A113492, A113497, A113533, A113534, A113535, A113153, A113154, A113122, A114045, A055462, A137986, A137987.
Programs
-
Magma
[&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
-
Maple
A000178 := proc(n) mul(i!,i=1..n) ; end proc: seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
-
Mathematica
a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *) Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *) FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *) RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *) BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
-
Maxima
A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
-
PARI
A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
-
PARI
a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
-
PARI
for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
-
Python
A000178_list, n, m = [1], 1,1 for i in range(1,100): m *= i n *= m A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
-
Python
from math import prod def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
-
Ruby
def mono_choices(a,b,n) n - [a,b].max end def comm_mono_choices(n) accum =1 0.upto(n-1) do |i| i.upto(n-1) do |j| accum = accum * mono_choices(i,j,n) end end accum end 1.upto(12) do |k| puts comm_mono_choices(k) end # Chad Brewbaker, Nov 03 2013
Formula
a(0) = 1, a(n) = n!*a(n-1). - Lee Hae-hwang, May 13 2003, corrected by Ilya Gutkovskiy, Jul 30 2016
a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - Amarnath Murthy, Dec 12 2003 [Formula corrected by Derek Orr, Jul 27 2014]
a(n) = sqrt(A055209(n)). - Philippe Deléham, Mar 07 2004
a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - Paul Barry, Aug 02 2008
log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - Charles R Greathouse IV, Jan 13 2012
Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - Peter Luschny, Jun 23 2012
G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - Paul D. Hanna, Oct 02 2013
A203227(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 30 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = G(n+2), where G(n) is the Barnes G-function.
a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - Michael Somos, Mar 11 2020
a(n) = Wronskian(1, x, x^2, ..., x^n). - Mohammed Yaseen, Aug 01 2023
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
Psi(x) is the digamma function. (End)
Comments