A000245 a(n) = 3*(2*n)!/((n+2)!*(n-1)!).
0, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700, 51166197843852, 194214400834356
Offset: 0
References
- Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 11, coefficients of P_3(z).
- Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013)
- C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math. 335 (2014), 1-7. MR3248794
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- F. S. Al-Kharousi, A. Umar, and M. M. Zubairu, On injective partial Catalan monoids, arXiv:2501.00285 [math.GR], 2024. See p. 2.
- Egor Alimpiev and Noah A Rosenberg, Enumeration of coalescent histories for caterpillar species trees and p-pseudocaterpillar gene trees, arXiv:2103.13464 [qbio.PE], 2021; Adv. Appl. Math. 131 (2021), 102265.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- David Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], Nov 25 2002.
- Reinis Cirpons, James East, and James D. Mitchell, Transformation representations of diagram monoids, arXiv:2411.14693 [math.RA], 2024. See pp. 3, 33.
- S. Connolly, Z. Gabor and A. Godbole, The location of the first ascent in a 123-avoiding permutation, arXiv:1401.2691 [math.CO], 2014.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 196).
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 31.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- Filippo Disanto and Thomas Wiehe, Some instances of a sub-permutation problem on pattern avoiding permutations, arXiv preprint arXiv:1210.6908 [math.CO], 2012-2014.
- Filippo Disanto and Thomas Wiehe, On the sub-permutations of pattern avoiding permutations, Discrete Math., 337 (2014), 127-141.
- Manuel Flores, Yuta Kimura and Baptiste Rognerud, Combinatorics of quasi-hereditary structures, arXiv:2004.04726 [math.RT], 2020.
- Sela Fried and Toufik Mansour, Counting r X s rectangles in (Catalan) words, arXiv:2405.06962 [math.CO], 2024. See p. 11.
- Alice L.L. Gao, Sergey Kitaev, and Philip B. Zhang, On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
- N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6
- Guo-Niu Han, Enumeration of Standard Puzzles [broken link]
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Sergey Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003). See also arXiv:0205215 [math.CO], 2002.
- Sergey Kitaev and Toufik Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
- C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146. [Annotated scanned copy]
- D. Nečas, Elementary models of low-pressure plasma polymerisation into nanofibrous mats, Phys. Scr. (2025) Vol. 100, 055601. See p. 10.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414. [Annotated scan of selected pages]
- A. Papoulis, A new method of inversion of the Laplace transform, Quart. Applied Math. 14 (1956), 405ff.
- J.-B. Priez and A. Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- J. Riordan, Letter to N. J. A. Sloane, Nov 10 1970
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- Zoran Sunic, Self describing sequences and the Catalan family tree, Elect. J. Combin., 10 (No. 1, 2003).
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
- S. J. Tedford, Combinatorial interpretations of convolutions of the Catalan numbers, Integers 11 (2011) #A3.
- Bridget E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
- Qi Wang, Tau-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019.
Crossrefs
Programs
-
GAP
Concatenation([0],List([1..30],n->3*Factorial(2*n)/(Factorial(n+2)*Factorial(n-1)))); # Muniru A Asiru, Aug 09 2018
-
Magma
[0] cat [3*Factorial(2*n)/(Factorial(n+2)*Factorial(n-1)): n in [1..30]]; // Vincenzo Librandi, Feb 15 2016
-
Maple
A000245 := n -> 3*binomial(2*n, n-1)/(n+2); seq(A000245(n), n=0..27);
-
Mathematica
Table[3(2n)!/((n+2)!(n-1)!),{n,0,30}] (* or *) Table[3*Binomial[2n,n-1]/(n+2),{n,0,30}] (* or *) Differences[CatalanNumber[Range[0,31]]] (* Harvey P. Dale, Jul 13 2011 *)
-
PARI
a(n)=if(n<1,0,3*(2*n)!/(n+2)!/(n-1)!)
-
Sage
[catalan_number(i+1) - catalan_number(i) for i in range(28)] # Zerinvary Lajos, May 17 2009
-
Sage
def A000245_list(n) : D = [0]*(n+1); D[1] = 1 b = False; h = 1; R = [] for i in range(2*n-1) : if b : for k in range(h,0,-1) : D[k] += D[k-1] h += 1; R.append(D[2]) else : for k in range(1,h, 1) : D[k] += D[k+1] b = not b return R A000245_list(29) # Peter Luschny, Jun 03 2012
Formula
G.f.: x*(c(x))^3 = (-1+(1-x)*c(x))/x, c(x) = g.f. for Catalan numbers. Also a(n) = 3*n*Catalan(n)/(n+2). - Wolfdieter Lang
For n > 1, a(n) = 3a(n-1) + Sum[a(k)*a(n-k-2), k=1,...,n-3]. - John W. Layman, Dec 13 2002; proved by Michael Somos, Jul 05 2003
G.f. is A(x) = C(x)*(1-x)/x-1/x = x(1+x*C(x)^2)*C(x)^2 where C(x) is g.f. for Catalan numbers, A000108.
G.f. satisfies x^2*A(x)^2 + (3*x-1)*A(x) + x = 0.
Series reversion of g.f. A(x) is -A(-x). - Michael Somos, Jan 21 2004
a(n+1) = Sum_{i+j+k=n} C(i)C(j)C(k) with i, j, k >= 0 and where C(k) denotes the k-th Catalan number. - Benoit Cloitre, Nov 09 2003
An inverse Chebyshev transform of x^2. - Paul Barry, Oct 13 2004
The sequence is 0, 0, 1, 0, 3, 0, 9, 0, ... with zeros restored. Second binomial transform of (-1)^n*A005322(n). The g.f. is transformed to x^2 under the Chebyshev transformation A(x)->(1/(1+x^2))A(x/(1+x^2)). For a sequence b(n), this corresponds to taking Sum_{k=0..floor(n/2)} C(n-k, k)(-1)^k*b(n-2k), or Sum_{k=0..n} C((n+k)/2, k)*b(k)*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Oct 13 2004
G.f.: (c(x^2)*(1-x^2)-1)/x^2, c(x) the g.f. of A000108; a(n) = Sum_{k=0..n} (k+1)*C(n, (n-k)/2)*(-1)^k*(C(2,k)-2*C(1,k)+C(0, k))*(1+(-1)^(n-k))/(n+k+2). - Paul Barry, Oct 13 2004
a(n) = Sum_{k=0..n} binomial(n,k)*2^(n-k)*(-1)^(k+1)*binomial(k, floor((k-1)/2)). - Paul Barry, Feb 16 2006
E.g.f.: exp(2*x)*(Bessel_I(1,2x) - Bessel_I(2,2*x)). - Paul Barry, Jun 04 2007
a(n) = (1/Pi)*Integral_{x=0..4} x^n*(x-1)*sqrt(x*(4-x))/(2*x). - Paul Barry, Feb 08 2008
D-finite with recurrence: For n > 1, a(n+1) = 2*(2n+1)*(n+1)*a(n)/((n+3)*n). - Sean A. Irvine, Dec 09 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n >= 2, a(n-1) = (-1)^(n-2)*coeff(charpoly(A,x),x^2). - Milan Janjic, Jul 08 2010
a(n) = sum of top row terms of M^(n-1), M = an infinite square production matrix as follows:
2, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
E.g.f.: exp(2*x)*(BesselI(2,2*x)) = Q(0) - 1 where Q(k) = 1 - 2*x/(k + 1 - 3*((k+1)^2)/((k^2) + 8*k + 9 - (k+2)*((k+3)^2)*(2*k+3)/((k+3)*(2*k+3) - 3*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
a(n) = -binomial(2*n,n)/(n+1)*hypergeom([-1,n+1/2],[n+2],4). - Peter Luschny, Aug 15 2012
a(n) = Sum_{i=0..n-1} C(i)*C(n-i), where C(i) denotes the i-th Catalan number. - Dmitry Kruchinin, Mar 02 2013
a(n) = binomial(2*n-1, n) - binomial(2*n-1, n-3). - Johannes W. Meijer, Jul 31 2013
a(n) ~ 3*4^n/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Feb 26 2016
a(n) = ((-1)^n/(n+1))*Sum_{i=0..n-1} (-1)^(i+1)*(n+1-i)*binomial(2*n+2,i), n>=0. - Taras Goy, Aug 09 2018
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=1} 1/a(n) = 14*Pi/(27*sqrt(3)) + 5/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 164*log(phi)/(75*sqrt(5)) + 7/25, where phi is the golden ratio (A001622). (End)
a(n) = 3*Sum_{k = 0..n-2} (-1)^k * binomial(2*n-k-1, n+1)*binomial(n+1, k)/(k + 1) for n >= 2. - Peter Bala, Sep 02 2024
Extensions
I changed the description and added an initial 0, to make this coincide with the first differences of the Catalan numbers A000108. Some of the other lines will need to be changed as a result. - N. J. A. Sloane, Oct 31 2003
Comments