A001075 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
Offset: 0
Examples
2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime. G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
References
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1745 (terms 0..200 from T. D. Noe)
- Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
- Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
- Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- H. Brocard, Notes élémentaires sur le problème de Peel [sic], Nouvelle Correspondance Mathématique, 4 (1878), 337-343.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 30, 43, 56.
- Chris Caldwell, Primality Proving, Arndt's theorem.
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., 2016.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Margherita Maria Ferrari and Norma Zagaglia Salvi, Aperiodic Compositions and Classical Integer Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8.
- R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
- Kiran S. Kedlaya, The 76th William Lowell Putnam Mathematical Competition, Dec 05 2015.
- Kiran S. Kedlaya, Solutions to the 76th William Lowell Putnam Mathematical Competition, Dec 05 2015.
- Tanya Khovanova, Recursive Sequences
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Eugene McDonnell, Heron's Rule and Integer-Area Triangles, At Play With J, 2010.
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Mathematics Stack Exchange.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
Crossrefs
Programs
-
Haskell
a001075 n = a001075_list !! n a001075_list = 1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list -- Reinhard Zumkeller, Aug 11 2011
-
Magma
I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
Maple
A001075 := proc(n) orthopoly[T](n,2) ; end proc: seq(A001075(n),n=0..30) ; # R. J. Mathar, Apr 14 2018
-
Mathematica
Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}] CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *) LinearRecurrence[{4,-1},{1,2},30] (* Harvey P. Dale, Aug 22 2015 *) Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *) ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *) a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
-
PARI
{a(n) = subst(poltchebi(abs(n)), x, 2)};
-
PARI
{a(n) = real((2 + quadgen(12))^abs(n))};
-
PARI
{a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
-
PARI
a(n)=polchebyshev(n,1,2) \\ Charles R Greathouse IV, Nov 07 2016
-
PARI
my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
-
SageMath
[lucas_number2(n,4,1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
-
SageMath
def a(n): Q = QuadraticField(3, 't') u = Q.units()[0] return (u^n).lift().coeffs()[0] # Ralf Stephan, Jun 19 2014
Formula
G.f.: (1 - 2*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(2*x)*cosh(sqrt(3)*x).
a(n) = 4*a(n-1) - a(n-2) = a(-n).
a(n) = (S(n, 4) - S(n-2, 4))/2 = T(n, 2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U, resp. T, are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 4) = A001353(n), n >= 0. See A049310 and A053120.
a(n) = sqrt(1 + 3*A001353(n)) (cf. Richardson comment, Oct 10 2002).
a(n) = 2^(-n)*Sum_{k>=0} binomial(2*n, 2*k)*3^k = 2^(-n)*Sum_{k>=0} A086645(n, k)*3^k. - Philippe Deléham, Mar 01 2004
a(n) = ((2 + sqrt(3))^n + (2 - sqrt(3))^n)/2; a(n) = ceiling((1/2)*(2 + sqrt(3))^(n)).
a(n) = cosh(n * log(2 + sqrt(3))).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k)*3^k. - Paul Barry, May 08 2003
a(n+2) = 2*a(n+1) + 3*Sum_{k>=0} a(n-k)*2^k. - Philippe Deléham, Mar 03 2004
a(n) = 2*a(n-1) + 3*A001353(n-1). - Lekraj Beedassy, Jul 21 2006
a(n) = left term of M^n * [1,0] where M = the 2 X 2 matrix [2,3; 1,2]. Right term = A001353(n). Example: a(4) = 97 since M^4 * [1,0] = [A001075(4), A001353(4)] = [97, 56]. - Gary W. Adamson, Dec 27 2006
Binomial transform of A026150: (1, 1, 4, 10, 28, 76, ...). - Gary W. Adamson, Nov 23 2007
First differences of A001571. - N. J. A. Sloane, Nov 03 2009
Sequence satisfies -3 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = Sum_{k=0..n} A201730(n,k)*2^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k - 4)/(x*(3*k - 1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
a(n) = Sum_{k=0..n} A238731(n,k). - Philippe Deléham, Mar 05 2014
a(n) = (tan(Pi/12)^n + tan(5*Pi/12)^n)/2. - Greg Dresden, Oct 01 2020
From Peter Bala, Aug 17 2022: (Start)
a(n) = (1/2)^n * [x^n] ( 4*x + sqrt(1 + 12*x^2) )^n.
The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k.
Sum_{n >= 1} 1/(a(n) - (3/2)/a(n)) = 1.
Sum_{n >= 1} (-1)^(n+1)/(a(n) + (1/2)/a(n)) = 1/3.
Sum_{n >= 1} 1/(a(n)^2 - 3/2) = 1 - 1/sqrt(3). (End)
a(n) = binomial(2*n, n) + 2*Sum_{k > 0} binomial(2*n, n+2*k)*cos(k*Pi/3). - Greg Dresden, Oct 11 2022
2*a(n) + 2^n = 3*Sum_{k=-n..n} (-1)^k*binomial(2*n, n+6*k). - Greg Dresden, Feb 07 2023
Extensions
More terms from James Sellers, Jul 10 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
Comments