A001107 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0
Examples
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below: 99 64--65--66--67--68--69--70--71--72 | | | 98 63 36--37--38--39--40--41--42 73 | | | | | 97 62 35 16--17--18--19--20 43 74 | | | | | | | 96 61 34 15 4---5---6 21 44 75 | | | | | | | | | 95 60 33 14 3 *0* 7 22 45 76 | | | | | | | | | | 94 59 32 13 2--*1* 8 23 46 77 | | | | | | | | 93 58 31 12--11-*10*--9 24 47 78 | | | | | | 92 57 30--29--28-*27*-26--25 48 79 | | | | 91 56--55--54--53-*52*-51--50--49 80 | | 90--89--88--87--86-*85*-84--83--82--81 [Edited by _Jon E. Schoenfield_, Jan 02 2017]
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See 6.6.3 p. 33.
- Emilio Apricena, A version of the Ulam spiral.
- Yin Choi Cheng, Greedy Sidon sets for linear forms, J. Num. Theor. (2024).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 344.
- Craig Knecht, Corona of the H0 hexagon with a T(n) triangle.
- Minh Nguyen, 2-adic Valuations of Square Spiral Sequences, Honors Thesis, Univ. of Southern Mississippi (2021).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Leo Tavares, Illustration: Conjoined Hexagon/Square Pairs
- Eric Weisstein's World of Mathematics, Barbell Graph.
- Eric Weisstein's World of Mathematics, Decagonal Number.
- Eric Weisstein's World of Mathematics, Graph Path.
- Eric Weisstein's World of Mathematics, Sunlet Graph.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Sequences from spirals: A001107 (this), A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.
Programs
-
Magma
[4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
-
Maple
A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
Mathematica
LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *) Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *) Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *) PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *) LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
-
PARI
a(n)=4*n^2-3*n
-
Python
a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017 def aList(): # Intended to compute the initial segment of the sequence, not isolated terms. x, y = 1, 1 yield 0 while True: yield x x, y = x + y + 8, y + 8 A001107 = aList() print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019
Formula
a(n) = n + 8*A000217(n-1). - Floor van Lamoen, Oct 14 2005
G.f.: x*(1 + 7*x)/(1 - x)^3.
Partial sums of odd numbers 1 mod 8, i.e., 1, 1 + 9, 1 + 9 + 17, ... . - Jon Perry, Dec 18 2004
1^3 + 3^3*(n-1)/(n+1) + 5^3*((n-1)*(n-2))/((n+1)*(n+2)) + 7^3*((n-1)*(n-2)*(n-3))/((n+1)*(n+2)*(n+3)) + ... = n*(4*n-3) [Ramanujan]. - Neven Juric, Apr 15 2008
Starting (1, 10, 27, 52, ...), this is the binomial transform of [1, 9, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 8*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Jul 10 2010
a(n) = 8 + 2*a(n-1) - a(n-2). - Ant King, Sep 04 2011
a(n) = A118729(8*n). - Philippe Deléham, Mar 26 2013
a(8*a(n) + 29*n+1) = a(8*a(n) + 29*n) + a(8*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n >= 1} 1/a(n) = Pi/6 + log(2) = 1.216745956158244182494339352... = A244647. - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Aug 28 2016: (Start)
E.g.f.: x*(1 + 4*x)*exp(x).
Sum_{n >= 1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 2*log(2) + 2*sqrt(2)*log(1 + sqrt(2)))/6 = 0.92491492293323294695... (End)
a(n) = A000217(3*n-2) - A000217(n-2). In general, if P(k,n) be the n-th k-gonal number and T(n) be the n-th triangular number, A000217(n), then P(T(k),n) = T((k-1)*n - (k-2)) - T(k-3)*T(n-2). - Charlie Marion, Sep 01 2020
Product_{n>=2} (1 - 1/a(n)) = 4/5. - Amiram Eldar, Jan 21 2021
Comments