A001399 a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ... Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - _Vladimir Shevelev_, Apr 23 2011 a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016 a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016 From _Gus Wiseman_, Apr 15 2019: (Start) The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144. () (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (211) (221) (51) (61) (62) (311) (222) (322) (71) (321) (331) (332) (411) (421) (422) (511) (431) (521) (611) The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193. (3) (31) (32) (33) (322) (332) (333) (3322) (311) (321) (331) (3221) (3222) (3331) (3111) (3211) (3311) (3321) (32221) (31111) (32111) (32211) (33211) (311111) (33111) (322111) (321111) (331111) (3111111) (3211111) (31111111) Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following. {} {12} {12,12} {12,12,12} {12,12,12,12} {12,12,12,12,12} {13,23} {12,13,23} {12,13,23,23} {12,13,13,23,23} {13,23,23} {13,13,23,23} {12,13,23,23,23} {13,23,23,23} {13,13,23,23,23} {13,23,23,23,23} The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304. (321) (421) (431) (432) (532) (542) (543) (643) (653) (521) (531) (541) (632) (642) (652) (743) (621) (631) (641) (651) (742) (752) (721) (731) (732) (751) (761) (821) (741) (832) (842) (831) (841) (851) (921) (931) (932) (A21) (941) (A31) (B21) The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612. (111) (211) (221) (222) (322) (332) (333) (433) (443) (311) (321) (331) (422) (432) (442) (533) (411) (421) (431) (441) (532) (542) (511) (521) (522) (541) (551) (611) (531) (622) (632) (621) (631) (641) (711) (721) (722) (811) (731) (821) (911) The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037. () (1) (2) (3) (22) (32) (33) (322) (332) (11) (21) (31) (221) (222) (331) (2222) (111) (211) (311) (321) (2221) (3221) (1111) (2111) (2211) (3211) (3311) (11111) (3111) (22111) (22211) (21111) (31111) (32111) (111111) (211111) (221111) (1111111) (311111) (2111111) (11111111) The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534. (5,3,1) (7,3,1) (7,5,1) (7,5,3) (9,5,3) (9,7,3) (9,7,5) (9,3,1) (9,5,1) (9,7,1) (11,5,3) (11,7,3) (11,3,1) (11,5,1) (11,7,1) (11,9,1) (13,3,1) (13,5,1) (13,5,3) (15,3,1) (13,7,1) (15,5,1) (17,3,1) The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10): (210) (310) (320) (420) (430) (530) (540) (640) (650) (410) (510) (520) (620) (630) (730) (740) (321) (610) (710) (720) (820) (830) (421) (431) (810) (910) (920) (521) (432) (532) (A10) (531) (541) (542) (621) (631) (632) (721) (641) (731) (821) The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207. (321) (3211) (3221) (3321) (32221) (33221) (33321) (32111) (32211) (33211) (322211) (322221) (321111) (322111) (332111) (332211) (3211111) (3221111) (3222111) (32111111) (3321111) (32211111) (321111111) (End) Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - _Wolfdieter Lang_, May 21 2019
References
- R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
- R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
- J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Marius A. Burtea, Table of n, a(n) for n = 0..17501 (terms 0..1000 from T. D. Noe, terms 14001 onwards corrected by Sean A. Irvine, April 25 2019)
- Hamid Afshar, Branislav Cvetkovic, Sabine Ertl, Daniel Grumiller, and Niklas Johansson, Conformal Chern-Simons holography-lock, stock and barrel, arXiv preprint arXiv:1110.5644 [hep-th], 2011.
- C. Ahmed, P. Martin, and V. Mazorchuk, On the number of principal ideals in d-tonal partition monoids, arXiv preprint arXiv:1503.06718 [math.CO], 2015.
- Nesrine Benyahia-Tani, Zahra Yahi, and Sadek Bouroubi, Ordered and non-ordered non-congruent convex quadrilaterals inscribed in a regular n-gon, Rostocker Math. Kolloq. 68 (2013), 71-79.
- N. Benyahia Tani, Z. Yahi, and S. Bouroubi, Ordered and non-ordered non-isometric convex quadrilaterals inscribed in a regular n-gon, Bulletin du Laboratoire Liforce 01 (2014), 1-9.
- Jonathan Bloom and Nathan McNew, Counting pattern-avoiding integer partitions, arXiv:1908.03953 [math.CO], 2019.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Chen Rong-si, S. El-Basil, and Zhang Fuji, Polygonal Systems Including the Corannulene and Coronene Homologs: Novel Applications of Pólya's Theorem, Z. Naturforsch., 52a (1997), 867-873.
- Lucia De Luca and Gero Friesecke, Classification of particle numbers with unique Heitmann-Radin minimizer, arXiv:1701.07231 [math-ph], 2017.
- Nick Fischer and Christian Ikenmeyer, The Computational Complexity of Plethysm Coefficients, arXiv:2002.00788 [cs.CC], 2020.
- H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no.8, 964-999.
- W. G. Harter and C. W. Patterson, Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators, Journal of Mathematical Physics, 20.7 (1979), 1453-1459. alternate copy
- M. D. Hirschhorn and J. A. Sellers, Enumeration of unigraphical partitions, JIS 11 (2008) 08.4.6.
- R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 352.
- J. H. Jordan, R. Walch, and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly 86 (1979), 686-689.
- Alexander V. Karpov, An Informational Basis for Voting Rules, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188.
- Gerzson Keri and Patric R. J. Östergård, The Number of Inequivalent (2R+3,7)R Optimal Covering Codes, Journal of Integer Sequences 9 (2006), Article 06.4.7.
- Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
- Axel Kleinschmidt and Valentin Verschinin, Tetrahedral modular graph functions, J. High Energy Phys. 2017, No. 9, Paper No. 155, 38 p. (2017), eq (3.40).
- Mathematics Stack Exchange, What does "pcr" stand for. [This is Comtet's notation for "prime circulator". See pp. 109-110.]
- M. B. Nathanson, Partitions with parts in a finite set, arXiv:math/0002098 [math.NT], 2000.
- Kival Ngaokrajang, Distinct triangles in n-gon for n = 3..9, Distinct triangles in 45-gon
- Kival Ngaokrajang, Illustration of 5-curves coins patterns
- Andrew N. Norris, Higher derivatives and the inverse derivative of a tensor-valued function of a tensor, arXiv:0707.0115 [math.SP], 2007; Equation 3.28, p. 10.
- Jon Perry, More Partition Function.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Vadim Ponomarenko, Minimal zero sequences of finite cyclic groups, INTEGERS 4 (2004), #A24.
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math. 35(5) (2004), 629-638.
- Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma), arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).
- Devansh Singh and S. N. Mishra, Representing K-parts Integer Partitions, Global Journal of Pure and Applied Mathematics (GJPAM), Volume 15 Number 6 (2019), pp. 889-907.
- Karl Hermann Struve, Fresnel's Interferenzerscheinungen: Theoretisch und Experimentell Bearbeitet, Dorpat, 1881 (Thesis). [Gives the Round(n^2/12) formula.]
- James Tanton, Young students approach integer triangles, FOCUS 22(5) (2002), 4 - 6.
- James Tanton, Integer Triangles, Chapter 11 in "Mathematics Galore!" (MAA, 2012).
- James Tilley, Stan Wagon, and Eric Weisstein, A Catalog of Facially Complete Graphs, arXiv:2409.11249 [math.CO], 2024. See p. 11.
- Richard Vale and Shayne Waldron, The construction of G-invariant finite tight frames, J. Four. Anal. Applic. 22 (2016), 1097-1120.
- Eric Weisstein's World of Mathematics, Tripod.
- Gus Wiseman, Number of ordered triples of distinct positive integers summing to n.
- Gus Wiseman, Number of non-unimodal triples of distinct positive integers summing to n.
- Gus Wiseman, Number of unimodal triples of distinct positive integers summing to n.
- Winston C. Yang, Maximal and minimal polyhexes, 2002.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
- Index entries for Molien series.
- Index entries for two-way infinite sequences
Crossrefs
Programs
-
Haskell
a001399 = p [1,2,3] where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Feb 28 2013
-
Magma
I:=[1,1,2,3,4,5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
-
Magma
[#RestrictedPartitions(n,{1,2,3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
-
Magma
[Round((n+3)^2/12): n in [0..70]]; // Marius A. Burtea, Jan 06 2019
-
Maple
A001399 := proc(n) round( (n+3)^2/12) ; end proc: seq(A001399(n),n=0..40) ; with(combstruct):ZL4:=[S,{S=Set(Cycle(Z,card<4))}, unlabeled]:seq(count(ZL4,size=n),n=0..61); # Zerinvary Lajos, Sep 24 2007 B:=[S,{S = Set(Sequence(Z,1 <= card),card <=3)},unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
-
Mathematica
CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ] Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *) k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *) LinearRecurrence[{1,1,0,-1,-1,1},{1,1,2,3,4,5},70] (* Harvey P. Dale, Jun 21 2012 *) a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *) k=3 (* Number of red beads in bracelet problem *);CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *) Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Apr 15 2019 *)
-
PARI
{a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
-
Python
[round((n+3)**2 / 12) for n in range(0,62)] # Ya-Ping Lu, Jan 24 2024
Formula
G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = A008284(n+3, 3), n >= 0.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
a(n) = a(-6 - n) for all n in Z. - Michael Somos, Sep 04 2006
a(6*n) = A003215(n), a(6*n + 1) = A000567(n + 1), a(6*n + 2) = A049450(n + 1), a(6*n + 3) = A033428(n + 1), a(6*n + 4) = A049451(n + 1), a(6*n + 5) = A045944(n + 1).
a(n) = a(n-1) + A008615(n+2) = a(n-2) + A008620(n) = a(n-3) + A008619(n) = A001840(n+1) - a(n-1) = A002620(n+2) - A001840(n) = A000601(n) - A000601(n-1). - Henry Bottomley, Apr 17 2001
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
72*a(n) = 17 + 6*(n+1)*(n+5) + 9*(-1)^n - 8*A061347(n). - Benoit Cloitre, Feb 09 2003
From Jon Perry, Jun 17 2003: (Start)
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
a(n) = A026820(n,3) for n > 2. - Reinhard Zumkeller, Jan 21 2010
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - David Neil McGrath, Feb 14 2015
a(n) = floor((n^2+3)/12) + floor((n+2)/2). - Giacomo Guglieri, Apr 02 2019
From Devansh Singh, May 28 2020: (Start)
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
a(n) = floor(((n+3)^2 + 4)/12). - Vladimír Modrák, Zuzana Soltysova, Dec 08 2020
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
Extensions
Name edited by Gus Wiseman, Apr 15 2019
Comments