A001576 a(n) = 1^n + 2^n + 4^n.
3, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721, 70368752566273, 281474993487873, 1125899940397057
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- John Elias, Illustration of Initial Terms: 1/4 Sierpinski Square Curve
- Andy Liu, West German Mathematical Olympiad 1982 - Second round, Problem 4, Crux Mathematicorum, p. 105, Vol. 12, May. 86.
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Crossrefs
Programs
-
Mathematica
Table[1^n + 2^n + 4^n, {n, 0, 24}]
-
PARI
a(n)=1+2^n+4^n \\ Charles R Greathouse IV, Jun 10 2011
-
Sage
[sigma(4,n)for n in range(0,23)] # Zerinvary Lajos, Jun 04 2009
Formula
a(n) = 6*a(n-1) - 8*a(n-2) + 3.
O.g.f.: -1/(-1+x) - 1/(-1+2*x) - 1/(-1+4*x) = ( -3+14*x-14*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Feb 29 2008
E.g.f.: e^x + e^(2*x) + e^(4*x). - Mohammad K. Azarian, Dec 26 2008
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 7*x + 35*x^2 + 155*x^3 + ... is the o.g.f. for the 2nd subdiagonal of triangle A022166, essentially A006095. - Peter Bala, Apr 07 2015
Comments