cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 83 results. Next

A001576 a(n) = 1^n + 2^n + 4^n.

Original entry on oeis.org

3, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721, 70368752566273, 281474993487873, 1125899940397057
Offset: 0

Views

Author

Keywords

Comments

Equals A135576, except for the first term. - Omar E. Pol, Nov 18 2008
Conjecture: For n > 1, if a(n) = 1^n + 2^n + 4^n is a prime number then n is of the form 3^h. For example, for h=1, n=3, a(n) = 1^3 + 2^3 + 4^3 = 73 (prime); for h=2, n=9, a(n) = 1^9 + 2^9 + 4^9 = 262657 (prime); for h=3, n=27, a(n) is not prime. - Vincenzo Librandi, Aug 03 2010
The previous conjecture was proved by Golomb in 1978. See A051154. - T. D. Noe, Aug 15 2010
Another more elementary proof can be found in Liu link. - Bernard Schott, Mar 08 2019
Fills in one quarter section of the figurate form of the Sierpinski square curve. See illustration in links and A141725. - John Elias, Mar 29 2023

Crossrefs

Subsequence of A002061.
See also comments in A051154.

Programs

Formula

a(n) = 6*a(n-1) - 8*a(n-2) + 3.
O.g.f.: -1/(-1+x) - 1/(-1+2*x) - 1/(-1+4*x) = ( -3+14*x-14*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Feb 29 2008
E.g.f.: e^x + e^(2*x) + e^(4*x). - Mohammad K. Azarian, Dec 26 2008
a(n) = A024088(n)/A000225(n). - Reinhard Zumkeller, Feb 15 2009
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 7*x + 35*x^2 + 155*x^3 + ... is the o.g.f. for the 2nd subdiagonal of triangle A022166, essentially A006095. - Peter Bala, Apr 07 2015

A001550 a(n) = 1^n + 2^n + 3^n.

Original entry on oeis.org

3, 6, 14, 36, 98, 276, 794, 2316, 6818, 20196, 60074, 179196, 535538, 1602516, 4799354, 14381676, 43112258, 129271236, 387682634, 1162785756, 3487832978, 10462450356, 31385253914, 94151567436, 282446313698, 847322163876
Offset: 0

Views

Author

Keywords

Comments

a(n)*(-1)^n, n>=0, gives the z-sequence for the Sheffer triangle A049458 ((signed) 3-restricted Stirling1 numbers), which is the inverse triangle of A143495 with offset [0,0] (3-restricted Stirling2 numbers). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The a-sequence for each (signed) r-restricted Stirling1 Sheffer triangle is A027641/A027642 (Bernoulli numbers). - Wolfdieter Lang, Oct 10 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001550 n = sum $ map (^ n) [1..3]  -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [1^n + 2^n + 3^n : n in [0..30]]; // Wesley Ivan Hurt, Jun 25 2020
    
  • Maple
    A001550:=-(3-12*z+11*z^2)/(z-1)/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[1^n + 2^n + 3^n, {n, 0, 30}]
    CoefficientList[Series[(3-12x+11x^2)/(1-6x+11x^2-6x^3),{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6},{3,6,14},31] (* Harvey P. Dale, Apr 30 2011 *)
    Total[Range[3]^#]&/@Range[0,30] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    a(n)=1+2^n+3^n \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def A001550(n): return 3**n+(1<Chai Wah Wu, Nov 01 2024

Formula

From Michael Somos: (Start)
G.f.: (3 -12*x +11*x^2)/(1 -6*x +11*x^2 -6*x^3).
a(n) = 5*a(n-1) - 6*a(n-2) + 2. (End)
E.g.f.: exp(x) + exp(2*x) + exp(3*x). - Mohammad K. Azarian, Dec 26 2008
a(0)=3, a(1)=6, a(2)=14, a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - Harvey P. Dale, Apr 30 2011
a(n) = A007689(n) + 1. - Reinhard Zumkeller, Mar 01 2012
From Kai Wang, May 18 2020: (Start)
a(n) = 3*A000392(n+3) - 12*A000392(n+2) + 11*A000392(n+1).
A000392(n) = (3*a(n+1) - 12*a(n) + 10*a(n-1))/2. (End)

Extensions

Additional terms from Michael Somos
Attribute "conjectured" removed from Simon Plouffe's g.f. by R. J. Mathar, Mar 11 2009

A074501 a(n) = 1^n + 2^n + 5^n.

Original entry on oeis.org

3, 8, 30, 134, 642, 3158, 15690, 78254, 390882, 1953638, 9766650, 48830174, 244144722, 1220711318, 6103532010, 30517610894, 152587956162, 762939584198, 3814697527770, 19073486852414, 95367432689202, 476837160300278
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-2*x) + 1/(1-5*x).
E.g.f.: e^x + e^(2*x) + e^(5*x). (End)
a(n) = 7*a(n-1) - 10*a(n-2) + 4 with a(0)=3, a(1)=8. - Vincenzo Librandi, Jul 21 2010

A034513 a(n) = 1^n + 3^n + 9^n.

Original entry on oeis.org

3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 387440173, 3486843451, 31381236757, 282430067923, 2541867422653, 22876797237931, 205891146443557, 1853020231898563, 16677181828806733, 150094635684419611
Offset: 0

Views

Author

Keywords

Comments

Also the sum of n-th powers of the divisors of 9.

Crossrefs

Programs

Formula

G.f.: 1/(1-x)+1/(1-3*x)+1/(1-9*x). E.g.f.: e^x+e^(3*x)+e^(9*x). - Mohammad K. Azarian, Dec 26 2008
a(n) = 13*a(n-1) - 39*a(n-2) + 27*a(n-3), a(0)=3, a(1)=13, a(2)=91. - Harvey P. Dale, Apr 13 2012

A074580 a(n) = 7^n + 8^n + 9^n.

Original entry on oeis.org

3, 24, 194, 1584, 13058, 108624, 911234, 7703664, 65588738, 561991824, 4843001474, 41948320944, 364990300418, 3188510652624, 27953062038914, 245823065693424, 2167728096132098, 19161612027339024, 169737447404391554
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-7*x) + 1/(1-8*x) + 1/(1-9*x).
E.g.f.: e^(7*x) + e^(8*x) + e^(9*x). (End)

A074527 a(n) = 2^n + 3^n + 5^n.

Original entry on oeis.org

3, 10, 38, 160, 722, 3400, 16418, 80440, 397442, 1973320, 9825698, 49007320, 244676162, 1222305640, 6108314978, 30531959800, 152631002882, 763068724360, 3815084948258, 19074649113880, 95370919473602, 476847620653480
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x) + 1/(1-3*x) + 1/(1-5*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(5*x). (End)
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Wesley Ivan Hurt, May 26 2024

A074507 a(n) = 1^n + 3^n + 5^n.

Original entry on oeis.org

3, 9, 35, 153, 707, 3369, 16355, 80313, 397187, 1972809, 9824675, 49005273, 244672067, 1222297449, 6108298595, 30531927033, 152630937347, 763068593289, 3815084686115, 19074648589593, 95370918425027, 476847618556329
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 3^n + 5^n, {n, 0, 22}]
    LinearRecurrence[{9,-23,15},{3,9,35},30] (* Harvey P. Dale, Mar 02 2022 *)
  • PARI
    a(n) = 1 + 3^n + 5^n; \\ Michel Marcus, Aug 07 2017

Formula

a(n) = 8*a(n-1) - 15*a(n-2) + 8.
G.f.: 1/(1-x)+1/(1-3*x)+1/(1-5*x). E.g.f.: e^x+e^(3*x)+e^(5*x). [Mohammad K. Azarian, Dec 26 2008]

A074528 a(n) = 2^n + 3^n + 6^n.

Original entry on oeis.org

3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

From Álvar Ibeas, Mar 24 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n+1 [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^(n+1) [Kwak and Lee, 2001].
(End)

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

A246985 is essentially identical.
Third row of A160449, shifted.

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-6*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(6*x). (End)
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3). - Wesley Ivan Hurt, Aug 21 2020

A074506 a(n) = 1^n + 3^n + 4^n.

Original entry on oeis.org

3, 8, 26, 92, 338, 1268, 4826, 18572, 72098, 281828, 1107626, 4371452, 17308658, 68703188, 273218426, 1088090732, 4338014018, 17309009348, 69106897226, 276040168412, 1102998412178, 4408506864308, 17623567104026
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 3^n + 4^n, {n, 0, 22}]
    LinearRecurrence[{8,-19,12},{3,8,26},30] (* Harvey P. Dale, May 12 2025 *)

Formula

a(n) = 7*a(n-1) - 12*a(n-2) + 6 with a(0)=3, a(1)=8. - Vincenzo Librandi, Jul 19 2010
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - R. J. Mathar, Jul 18 2010
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-3*x) + 1/(1-4*x).
E.g.f.: e^x + e^(3*x) + e^(4*x). (End)

A074526 a(n) = 2^n + 3^n + 4^n.

Original entry on oeis.org

3, 9, 29, 99, 353, 1299, 4889, 18699, 72353, 282339, 1108649, 4373499, 17312753, 68711379, 273234809, 1088123499, 4338079553, 17309140419, 69107159369, 276040692699, 1102999460753, 4408508961459, 17623571298329
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [2^n + 3^n + 4^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
  • Mathematica
    Table[2^n + 3^n + 4^n, {n, 0, 23}]
    LinearRecurrence[{9,-26,24},{3,9,29},30] (* Harvey P. Dale, Jun 14 2022 *)

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-4*x).
E.g.f.: exp(2*x)+exp(3*x)+exp(4*x). (End)
Showing 1-10 of 83 results. Next