cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 88 results. Next

A001576 a(n) = 1^n + 2^n + 4^n.

Original entry on oeis.org

3, 7, 21, 73, 273, 1057, 4161, 16513, 65793, 262657, 1049601, 4196353, 16781313, 67117057, 268451841, 1073774593, 4295032833, 17180000257, 68719738881, 274878431233, 1099512676353, 4398048608257, 17592190238721, 70368752566273, 281474993487873, 1125899940397057
Offset: 0

Views

Author

Keywords

Comments

Equals A135576, except for the first term. - Omar E. Pol, Nov 18 2008
Conjecture: For n > 1, if a(n) = 1^n + 2^n + 4^n is a prime number then n is of the form 3^h. For example, for h=1, n=3, a(n) = 1^3 + 2^3 + 4^3 = 73 (prime); for h=2, n=9, a(n) = 1^9 + 2^9 + 4^9 = 262657 (prime); for h=3, n=27, a(n) is not prime. - Vincenzo Librandi, Aug 03 2010
The previous conjecture was proved by Golomb in 1978. See A051154. - T. D. Noe, Aug 15 2010
Another more elementary proof can be found in Liu link. - Bernard Schott, Mar 08 2019
Fills in one quarter section of the figurate form of the Sierpinski square curve. See illustration in links and A141725. - John Elias, Mar 29 2023

Crossrefs

Subsequence of A002061.
See also comments in A051154.

Programs

Formula

a(n) = 6*a(n-1) - 8*a(n-2) + 3.
O.g.f.: -1/(-1+x) - 1/(-1+2*x) - 1/(-1+4*x) = ( -3+14*x-14*x^2 ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Feb 29 2008
E.g.f.: e^x + e^(2*x) + e^(4*x). - Mohammad K. Azarian, Dec 26 2008
a(n) = A024088(n)/A000225(n). - Reinhard Zumkeller, Feb 15 2009
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 7*x + 35*x^2 + 155*x^3 + ... is the o.g.f. for the 2nd subdiagonal of triangle A022166, essentially A006095. - Peter Bala, Apr 07 2015

A001550 a(n) = 1^n + 2^n + 3^n.

Original entry on oeis.org

3, 6, 14, 36, 98, 276, 794, 2316, 6818, 20196, 60074, 179196, 535538, 1602516, 4799354, 14381676, 43112258, 129271236, 387682634, 1162785756, 3487832978, 10462450356, 31385253914, 94151567436, 282446313698, 847322163876
Offset: 0

Views

Author

Keywords

Comments

a(n)*(-1)^n, n>=0, gives the z-sequence for the Sheffer triangle A049458 ((signed) 3-restricted Stirling1 numbers), which is the inverse triangle of A143495 with offset [0,0] (3-restricted Stirling2 numbers). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The a-sequence for each (signed) r-restricted Stirling1 Sheffer triangle is A027641/A027642 (Bernoulli numbers). - Wolfdieter Lang, Oct 10 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001550 n = sum $ map (^ n) [1..3]  -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [1^n + 2^n + 3^n : n in [0..30]]; // Wesley Ivan Hurt, Jun 25 2020
    
  • Maple
    A001550:=-(3-12*z+11*z^2)/(z-1)/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[1^n + 2^n + 3^n, {n, 0, 30}]
    CoefficientList[Series[(3-12x+11x^2)/(1-6x+11x^2-6x^3),{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6},{3,6,14},31] (* Harvey P. Dale, Apr 30 2011 *)
    Total[Range[3]^#]&/@Range[0,30] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    a(n)=1+2^n+3^n \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def A001550(n): return 3**n+(1<Chai Wah Wu, Nov 01 2024

Formula

From Michael Somos: (Start)
G.f.: (3 -12*x +11*x^2)/(1 -6*x +11*x^2 -6*x^3).
a(n) = 5*a(n-1) - 6*a(n-2) + 2. (End)
E.g.f.: exp(x) + exp(2*x) + exp(3*x). - Mohammad K. Azarian, Dec 26 2008
a(0)=3, a(1)=6, a(2)=14, a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - Harvey P. Dale, Apr 30 2011
a(n) = A007689(n) + 1. - Reinhard Zumkeller, Mar 01 2012
From Kai Wang, May 18 2020: (Start)
a(n) = 3*A000392(n+3) - 12*A000392(n+2) + 11*A000392(n+1).
A000392(n) = (3*a(n+1) - 12*a(n) + 10*a(n-1))/2. (End)

Extensions

Additional terms from Michael Somos
Attribute "conjectured" removed from Simon Plouffe's g.f. by R. J. Mathar, Mar 11 2009

A074501 a(n) = 1^n + 2^n + 5^n.

Original entry on oeis.org

3, 8, 30, 134, 642, 3158, 15690, 78254, 390882, 1953638, 9766650, 48830174, 244144722, 1220711318, 6103532010, 30517610894, 152587956162, 762939584198, 3814697527770, 19073486852414, 95367432689202, 476837160300278
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-2*x) + 1/(1-5*x).
E.g.f.: e^x + e^(2*x) + e^(5*x). (End)
a(n) = 7*a(n-1) - 10*a(n-2) + 4 with a(0)=3, a(1)=8. - Vincenzo Librandi, Jul 21 2010

A024023 a(n) = 3^n - 1.

Original entry on oeis.org

0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442, 2541865828328, 7625597484986, 22876792454960
Offset: 0

Views

Author

Keywords

Comments

Number of different directions along lines and hyper-diagonals in an n-dimensional cubic lattice for the attacking queens problem (A036464 in n=2, A068940 in n=3 and A068941 in n=4). The n-dimensional direction vectors have the a(n)+1 Cartesian coordinates (i,j,k,l,...) where i,j,k,l,... = -1, 0, or +1, excluding the zero-vector i=j=k=l=...=0. The corresponding hyper-line count is A003462. - R. J. Mathar, May 01 2006
Total number of sequences of length m=1,...,n with nonzero integer elements satisfying the condition Sum_{k=1..m} |n_k| <= n. See the K. A. Meissner link p. 6 (with a typo: it should be 3^([2a]-1)-1). - Wolfdieter Lang, Jan 21 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are disjoint and either 0) x is a proper subset of y or y is a proper subset of x, or 1) x is not a subset of y and y is not a subset of x. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
Number of neighbors in Moore's neighborhood in n dimensions. - Dmitry Zaitsev, Nov 30 2015
Number of terms in conjunctive normal form of Boolean expression with n variables. E.g., a(2) = 8: [~x, ~y, x, y, ~x|~y, ~x|y, x|~y, x|y]. - Yuchun Ji, May 12 2023
Number of rays of the Coxeter arrangement of type B_n. Equivalently, number of facets of the n-dimensional type B permutahedron. - Jose Bastidas, Sep 12 2023

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Ternary......decimal:
0...............0
2...............2
22..............8
222............26
2222...........80
22222.........242
222222........728
2222222......2186
22222222.....6560
222222222...19682
2222222222..59048
etc...........etc.
(End)
Sequence combinatorics: n=3: With length m=1: [1],[2],[3] each with 2 signs, with m=2: [1,1], [1,2], [2,1], each 2^2 = 4 times from choosing signs; m=3: [1,1,1] coming in 2^3 signed versions: 3*2 + 3*4 + 1*8 = 26 = a(3). The order is important, hence the M_0 multinomials A048996 enter as factors.
A027902 gives the 384 divisors of a(24). - _Reinhard Zumkeller_, Mar 11 2010
		

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.

Crossrefs

Cf. triangle A013609.
Cf. second column of A145901.

Programs

Formula

a(n) = A000244(n) - 1.
a(n) = 2*A003462(n). - R. J. Mathar, May 01 2006
A128760(a(n)) > 0. - Reinhard Zumkeller, Mar 25 2007
G.f.: 2*x/((-1+x)*(-1+3*x)) = 1/(-1+x) - 1/(-1+3*x). - R. J. Mathar, Nov 19 2007
a(n) = Sum_{k=1..n} Sum_{m=1..k} binomial(k-1,m-1)*2^m, n >= 1. a(0)=0. From the sequence combinatorics mentioned above. Twice partial sums of powers of 3.
E.g.f.: e^(3*x) - e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = A024101(n)/A034472(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = 3*a(n-1) + 2 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
E.g.f.: -E(0) where E(k) = 1 - 3^k/(1 - x/(x - 3^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n) = A227048(n,A020914(n)). - Reinhard Zumkeller, Jun 30 2013
Sum_{n>=1} 1/a(n) = A214369. - Amiram Eldar, Nov 11 2020
a(n) = Sum_{k=1..n} 2^k*binomial(n,k). - Ridouane Oudra, Jun 15 2025
From Peter Bala, Jul 01 2025: (Start)
For n >= 1, a(2*n)/a(n) = A034472(n) and a(3*n)/a(n) = A034513(n).
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A003462 (k = 2), A006100 (k = 3), A006101 (k = 4), A006102 (k = 5), A022196 (k = 6), A022197 (k = 7), A022198 (k = 8), A022199 (k = 9), A022200 (k = 10), A022201 (k = 11), A022202 (k = 12) and A022203 (k = 13).
The following are all examples of telescoping series:
Sum_{n >= 1} 3^n/(a(n)*a(n+1)) = 1/2^2; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/(2*8^2).
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 3^n/(a(n)*a(n+2)) = 5/64; Sum_{n >= 1} (-3)^n/(a(n)*a(n+2)) = -3/64.
Sum_{n >= 1} 3^n/(a(n)*a(n+4)) = 703/83200; Sum_{n >= 1} (-3)^n/(a(n)*a(n+4)) = - 417/83200. (End)

A074580 a(n) = 7^n + 8^n + 9^n.

Original entry on oeis.org

3, 24, 194, 1584, 13058, 108624, 911234, 7703664, 65588738, 561991824, 4843001474, 41948320944, 364990300418, 3188510652624, 27953062038914, 245823065693424, 2167728096132098, 19161612027339024, 169737447404391554
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-7*x) + 1/(1-8*x) + 1/(1-9*x).
E.g.f.: e^(7*x) + e^(8*x) + e^(9*x). (End)

A001579 a(n) = 3^n + 5^n + 6^n.

Original entry on oeis.org

3, 14, 70, 368, 2002, 11144, 63010, 360248, 2076802, 12050504, 70290850, 411802328, 2421454402, 14282991464, 84472462690, 500716911608, 2973740844802, 17689728038024, 105375041354530, 628434388600088
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [3^n + 5^n + 6^n: n in [0..20]]; // Vincenzo Librandi, May 20 2011
    
  • Mathematica
    Table[3^n + 5^n + 6^n, {n, 0, 20}]
    LinearRecurrence[{14,-63,90},{3,14,70},20] (* Harvey P. Dale, Jun 17 2021 *)
  • PARI
    a(n)=3^n+5^n+6^n \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def a(n): return 3**n + 5**n + 6**n
    print([a(n) for n in range(20)]) # Michael S. Branicky, Mar 14 2021

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-5*x) + 1/(1-6*x).
E.g.f.: e^(3*x) + e^(5*x) + e^(6*x). (End)

A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)

Examples

			Start of array:
  1,  2,  2,   3,   2,    4, ...
  1,  3,  4,   7,   6,   12, ...
  1,  5, 10,  21,  26,   50, ...
  1,  9, 28,  73, 126,  252, ...
  1, 17, 82, 273, 626, 1394, ...
  ...
The triangle T(m, k) with row offset 1 starts:
  m\k 0  1  2   3    4    5    6    7   8  9 ...
  1:  1
  2:  2  1
  3:  2  3  1
  4:  3  4  5   1
  5:  2  7 10   9    1
  6:  4  6 21  28   17    1
  7:  2 12 26  73   82   33    1
  8:  4  8 50 126  273  244   65    1
  9:  3 15 50 252  626 1057  730  129   1
  10: 4 13 85 344 1394 3126 4161 2188 257  1
  ... - _Wolfdieter Lang_, Jan 14 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

Crossrefs

Programs

  • Magma
    A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >;
    [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory):
    seq(seq(sigma[k](1+d-k), k=0..d), d=0..12);  # Alois P. Heinz, Feb 06 2013
  • Mathematica
    rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
  • SageMath
    def A109974(n,k): return sigma(n-k+1, k-1)
    flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016

A074527 a(n) = 2^n + 3^n + 5^n.

Original entry on oeis.org

3, 10, 38, 160, 722, 3400, 16418, 80440, 397442, 1973320, 9825698, 49007320, 244676162, 1222305640, 6108314978, 30531959800, 152631002882, 763068724360, 3815084948258, 19074649113880, 95370919473602, 476847620653480
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x) + 1/(1-3*x) + 1/(1-5*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(5*x). (End)
a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Wesley Ivan Hurt, May 26 2024

A082771 Triangular array, read by rows: t(n,k) = Sum_{d|n} d^k, 0 <= k < n.

Original entry on oeis.org

1, 2, 3, 2, 4, 10, 3, 7, 21, 73, 2, 6, 26, 126, 626, 4, 12, 50, 252, 1394, 8052, 2, 8, 50, 344, 2402, 16808, 117650, 4, 15, 85, 585, 4369, 33825, 266305, 2113665, 3, 13, 91, 757, 6643, 59293, 532171, 4785157, 43053283, 4, 18, 130, 1134, 10642, 103158, 1015690, 10078254, 100390882, 1001953638
Offset: 1

Views

Author

Reinhard Zumkeller, May 21 2003

Keywords

Examples

			From _R. J. Mathar_, Dec 06 2006 (Start):
The triangle may be extended to a rectangular array (A319278):
  1  1   1    1     1 1 1 1 1 1 1 ...
  2  3   5    9    17 33 65 129 257 513 1025 ...
  2  4  10   28    82 244 730 2188 6562 19684 59050 ...
  3  7  21   73   273 1057 4161 16513 65793 262657 1049601 ...
  2  6  26  126   626 3126 15626 78126 390626 1953126 9765626 ...
  4 12  50  252  1394 8052 47450 282252 1686434 10097892 60526250 ...
  2  8  50  344  2402 16808 117650 823544 5764802 40353608 282475250 ...
  4 15  85  585  4369 33825 266305 2113665 16843009 134480385 1074791425 ...
  3 13  91  757  6643 59293 532171 4785157 43053283 387440173 3486843451 ...
  4 18 130 1134 10642 103158 1015690 10078254 100390882 1001953638... (End)
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> numtheory[sigma][k](n):
    seq(seq(T(n,k), k=0..n-1), n=1..10);  # Alois P. Heinz, Oct 25 2024
  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)
  • PARI
    row(n) = {my(f = factor(n)); vector(n, k, sigma(f, k-1));} \\ Amiram Eldar, May 09 2025

Formula

t(n, k) = Product(((p^((e(n, p)+1)*k))-1)/(p^k-1): n=Product(p^e(n, p): p prime)), 0<=k
t(n,0) = A000005(n), t(n,n) = A023887(n).
t(n,1) = A000203(n), n>1; t(n,2) = A001157(n), n>2; t(n,3) = A001158(n), n>3.
t(n,4) = A001159(n), n>4; t(n,5) = A001160(n), n>5; t(n,6) = A013954(n), n>6.
From R. J. Mathar, Oct 29 2006: (Start)
t(2,k) = A000051(k); t(3,k) = A034472(k); t(4,k) = A001576(k);
t(5,k) = A034474(k); t(6,k) = A034488(k); t(7,k) = A034491(k);
t(8,k) = A034496(k); t(9,k) = A034513(k); t(10,k) = A034517(k);
t(11,k) = A034524(k); t(12,k) = A034660(k). (End)

Extensions

Corrected by R. J. Mathar, Dec 05 2006

A074507 a(n) = 1^n + 3^n + 5^n.

Original entry on oeis.org

3, 9, 35, 153, 707, 3369, 16355, 80313, 397187, 1972809, 9824675, 49005273, 244672067, 1222297449, 6108298595, 30531927033, 152630937347, 763068593289, 3815084686115, 19074648589593, 95370918425027, 476847618556329
Offset: 0

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Programs

  • Mathematica
    Table[1^n + 3^n + 5^n, {n, 0, 22}]
    LinearRecurrence[{9,-23,15},{3,9,35},30] (* Harvey P. Dale, Mar 02 2022 *)
  • PARI
    a(n) = 1 + 3^n + 5^n; \\ Michel Marcus, Aug 07 2017

Formula

a(n) = 8*a(n-1) - 15*a(n-2) + 8.
G.f.: 1/(1-x)+1/(1-3*x)+1/(1-5*x). E.g.f.: e^x+e^(3*x)+e^(5*x). [Mohammad K. Azarian, Dec 26 2008]
Showing 1-10 of 88 results. Next