A014554 Erroneous version of A001606.
2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Select[LucasL[Range[0,250]], PrimeQ] (* Harvey P. Dale, Nov 02 2011 *)
select(isprime, [seq(combinat:-fibonacci(2*n)+combinat:-fibonacci(2*n+2), n=1..200)]); # Robert Israel, May 01 2017
Select[LucasL[Range[1, 400, 2]], PrimeQ] (* Vincenzo Librandi, May 01 2017 *) Select[LinearRecurrence[{3,-1},{1,4},160],PrimeQ] (* Harvey P. Dale, Sep 01 2024 *)
If k = 56, then L(2*k + 1) is a prime with twenty-four digits.
The prime 139 is here because it is F(12)-F(5).
lst={}; Do[p=Fibonacci[n]-Fibonacci[i]; If[PrimeQ[p], AppendTo[lst, p]], {n, 2, 40}, {i, n-1}]; Union[lst] Select[Union[Flatten[Differences/@Subsets[Fibonacci[Range[50]],{2}]]],PrimeQ] (* Harvey P. Dale, Aug 04 2024 *)
list(lim)=my(v=List(),F=vector(A130233(lim),i,fibonacci(i)),s,t); for(i=1,#F, s=0; forstep(j=i,1,-1, s+=F[j]; if(s>lim, break); if(isprime(s), listput(v,s)))); Set(v) \\ Charles R Greathouse IV, Oct 07 2016
[2,1] cat [Maximum(PrimeDivisors(Lucas(n))): n in [2..60]]; // Vincenzo Librandi, Dec 26 2016
A079451 := proc(n) A006530(A000032(n)) ; end proc: seq(A079451(n),n=0..30) ; # R. J. Mathar, Oct 26 2013 # second Maple program: a:= n-> max(ifactors((<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1])[2][..., 1][], 1): seq(a(n), n=0..46); # Alois P. Heinz, Aug 04 2025
Join[{2,1},f[n_]:=(FactorInteger@LucasL@n)[[-1,1]];Array[f,60,2]] (* Vincenzo Librandi, Dec 26 2016 *)
a(n) = my(f = factor(fibonacci(n+1)+fibonacci(n-1))); if (om = #f~, f[om, 1], 1); \\ Michel Marcus, Oct 26 2013
A079451(n) = A006530(A000032(n)) \\ M. F. Hasler, Apr 10 2025
def A079451(n): return A006530(A000032(n)) # M. F. Hasler, Apr 10 2025
Select[Range[0, 100], PrimeQ[Fibonacci[#]] && PrimeQ[LucasL[#]] & ] (* Robert Price, May 27 2019 *)
is(n)=isprime(n) && ispseudoprime(fibonacci(n)) && ispseudoprime(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, May 21 2014
a(1) = 7 because Lucas(4) = 7 is prime and Fibonacci(4) = 3 is prime too.
Do[f=Fibonacci[n]; l=Fibonacci[n-1]+Fibonacci[n+1]; If[PrimeQ[f]&&PrimeQ[l], Print[{f,l}]], {n,10000}] nn=1000;Transpose[Select[Thread[{Fibonacci[Range[nn]], LucasL[ Range[nn]]}],And@@PrimeQ[#]&]][[2]] (* Harvey P. Dale, Jul 08 2011 *)
Between L(7)=29 and L(8)=47 we find the following primes: 31, 37, 41 and 43 hence a(7)=4.
a052012 n = a052012_list !! (n-1) a052012_list = c 1 0 $ tail a000204_list where c x y ls'@(l:ls) | x < l = c (x+1) (y + a010051 x) ls' | otherwise = y : c (x+1) 0 ls -- Reinhard Zumkeller, Dec 18 2011
PrimePi[Last[#]-1]-PrimePi[First[#]]&/@Partition[LucasL[ Range[45]],2,1] (* Harvey P. Dale, Jun 28 2011 *)
[#PrimesUpTo(Lucas(n)): n in [0..41]];
a:= n-> numtheory[pi]((<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]): seq(a(n), n=0..35); # Alois P. Heinz, Nov 09 2016
Table[PrimePi[LucasL[n]], {n, 0, 50}]
Comments