cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A014554 Erroneous version of A001606.

Original entry on oeis.org

2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353
Offset: 0

Views

Author

Keywords

A005479 Prime Lucas numbers (cf. A000032).

Original entry on oeis.org

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149, 412670427844921037470771, 258899611203303418721656157249445530046830073044201152332257717521
Offset: 1

Views

Author

Keywords

Comments

It appears that a(n) is the intersection ( or a subset of the intersection ) of A113192[n], Primes that are the difference of two Lucas numbers and A113188[n], Primes that are the difference of two Fibonacci numbers, excluding A113192[1] = A113188[1] = 2. - Alexander Adamchuk, Aug 06 2006
For n>2 also: Primes which are the sum of four consecutive Fibonacci numbers, a(n) = A153867(n-2), cf. link to SeqFan list (Apr. 2014). - M. F. Hasler, Apr 24 2014
Conjectures: 7, 47 and 2207 are the only a(n) mod 10 = 7. They are also the only a(n) values where the Lucas index is not a prime. See A001606 for the Lucas index values of these primes. See A266587 for the divisibility of Lucas numbers by powers of primes. - Richard R. Forberg, Mar 24 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Select[LucasL[Range[0,250]], PrimeQ] (* Harvey P. Dale, Nov 02 2011 *)

Extensions

One further term (from the Knott web site) from Parthasarathy Nambi, Jun 27 2008

A285992 Primes in the bisected Lucas sequence A002878.

Original entry on oeis.org

11, 29, 199, 521, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149, 412670427844921037470771, 258899611203303418721656157249445530046830073044201152332257717521
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2017

Keywords

Comments

Subsequence of A005479.

Crossrefs

Programs

  • Maple
    select(isprime, [seq(combinat:-fibonacci(2*n)+combinat:-fibonacci(2*n+2), n=1..200)]); # Robert Israel, May 01 2017
  • Mathematica
    Select[LucasL[Range[1, 400, 2]], PrimeQ] (* Vincenzo Librandi, May 01 2017 *)
    Select[LinearRecurrence[{3,-1},{1,4},160],PrimeQ] (* Harvey P. Dale, Sep 01 2024 *)

Formula

A002878 INTERSECT A000040.
A000032(k) for odd k in A001606. - Robert Israel, May 01 2017

A117522 Numbers k such that L(2*k + 1) is prime, where L(m) is a Lucas number.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 15, 18, 20, 23, 26, 30, 35, 39, 56, 156, 176, 251, 306, 308, 431, 548, 680, 2393, 2396, 2925, 3870, 4233, 5345, 6125, 6981, 7224, 9734, 17724, 18389, 22253, 25584, 28001, 40835, 44924, 47411, 70028, 74045, 79760, 91544, 96600, 101333, 172146, 193716, 221804, 266138, 287109, 308393, 315590, 318875, 325910, 346073, 450828, 525924
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 26 2006

Keywords

Comments

For n = 24..43, we can only claim that L(2*a(n) + 1) is a probable prime. Sequence arises in a study of A269254; for detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Examples

			If k = 56, then L(2*k + 1) is a prime with twenty-four digits.
		

Crossrefs

Extensions

Values beyond 680 from L. Edson Jeffery, et al., Feb 02 2018
a(44)-a(56) from Robert Price, Jun 12 2025
a(57)-a(59) (using data in A001606) from Alois P. Heinz, Jun 12 2025

A113188 Primes that are the difference of two Fibonacci numbers; primes in A007298.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 19, 29, 31, 47, 53, 89, 131, 139, 199, 233, 521, 607, 953, 1453, 1597, 2207, 2351, 2579, 3571, 6763, 9349, 10891, 28513, 28649, 28657, 42187, 44771, 46279, 75017, 189653, 317777, 514229, 1981891, 2177699, 3010349, 3206767
Offset: 1

Views

Author

T. D. Noe, Oct 17 2005

Keywords

Comments

The difference F(i)-F(j) equals the sum F(j-1)+...+F(i-2) [Corrected by Patrick Capelle, Mar 01 2008]. In general, we need gcd(i,j)=1 for F(i)-F(j) to be prime. The exceptions are handled by the following rule: if i and j are both even or both odd, then F(i)-F(j) is prime if either (1) i-j=4 and L(i-2) is a Lucas prime or (2) i-j=2 and F(i-1) is a Fibonacci prime.

Examples

			The prime 139 is here because it is F(12)-F(5).
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A001605 (Fibonacci(n) is prime), A001606 (Lucas(n) is prime), A113189 (number of times that Fibonacci(n)-Fibonacci(i) is prime for i=0..n-3).

Programs

  • Mathematica
    lst={}; Do[p=Fibonacci[n]-Fibonacci[i]; If[PrimeQ[p], AppendTo[lst, p]], {n, 2, 40}, {i, n-1}]; Union[lst]
    Select[Union[Flatten[Differences/@Subsets[Fibonacci[Range[50]],{2}]]],PrimeQ] (* Harvey P. Dale, Aug 04 2024 *)
  • PARI
    list(lim)=my(v=List(),F=vector(A130233(lim),i,fibonacci(i)),s,t); for(i=1,#F, s=0; forstep(j=i,1,-1, s+=F[j]; if(s>lim, break); if(isprime(s), listput(v,s)))); Set(v) \\ Charles R Greathouse IV, Oct 07 2016

A079451 Largest prime dividing the n-th Lucas number (A000032); 1 when no such prime exists.

Original entry on oeis.org

2, 1, 3, 2, 7, 11, 3, 29, 47, 19, 41, 199, 23, 521, 281, 31, 2207, 3571, 107, 9349, 2161, 211, 307, 461, 1103, 151, 90481, 5779, 14503, 19489, 2521, 3010349, 4481, 9901, 63443, 911, 103681, 54018521, 29134601, 859, 3041, 370248451, 1427, 144481, 967, 541, 275449
Offset: 0

Views

Author

Lekraj Beedassy, Jan 13 2003

Keywords

Crossrefs

Cf. A000032 (Lucas numbers), A006530 (greatest prime factor).
Cf. A001606 (indices of prime Lucas numbers <=> where a(n) = A000032(n)), subsequence of A076697 (indices of record values in this sequence).
Cf. A280104 (same for smallest prime factor).

Programs

Formula

a(n) = A006530(A000032(n)). - Felix Fröhlich, Dec 26 2016

Extensions

More terms from Michel Marcus, Oct 26 2013
Modified b-file and scripts so that a(1)=1. - David Radcliffe, Aug 03 2025

A080327 Numbers k for which Lucas(k) and Fibonacci(k) are both prime.

Original entry on oeis.org

4, 5, 7, 11, 13, 17, 47, 148091
Offset: 1

Views

Author

T. D. Noe, Feb 15 2003

Keywords

Comments

The intersection of A001605 and A001606. Fibonacci(148091) and Lucas(148091) are probable primes.
Corresponding Fibonacci-Lucas prime twins are listed in A121533. Corresponding Lucas-Fibonacci prime twins are listed in A121534. Fibonacci(148091) and Lucas(148091) are probable Fibonacci-Lucas and Lucas-Fibonacci prime twins. They have 30949 and 30950 digits. - Alexander Adamchuk, Aug 05 2006
Heuristically, this sequence is finite. It is quite probable, but presently unprovable, that it is now complete. - David Broadhurst, Jun 25 2008
Western Number Theory problem 007:13 by Gary Walsh asks to prove that a(8) = 148091 is in this sequence. - Charles R Greathouse IV, May 21 2014

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 246.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[Fibonacci[#]] && PrimeQ[LucasL[#]] & ] (* Robert Price, May 27 2019 *)
  • PARI
    is(n)=isprime(n) && ispseudoprime(fibonacci(n)) && ispseudoprime(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, May 21 2014

A121534 Lucas-Fibonacci prime twins: Prime Lucas numbers Lucas(k) such that Fibonacci numbers Fibonacci(k) are also prime.

Original entry on oeis.org

7, 11, 29, 199, 521, 3571, 6643838879
Offset: 1

Views

Author

Alexander Adamchuk, Aug 05 2006

Keywords

Comments

Indices for Lucas-Fibonacci prime twins are A080327(n). Corresponding Fibonacci-Lucas prime twins are A121533(n). Probable primes Fibonacci(148091) and Lucas(148091) are the next probable Fibonacci-Lucas and Lucas-Fibonacci prime twins. They have 30949 and 30950 digits.

Examples

			a(1) = 7 because Lucas(4) = 7 is prime and Fibonacci(4) = 3 is prime too.
		

Crossrefs

Programs

  • Mathematica
    Do[f=Fibonacci[n]; l=Fibonacci[n-1]+Fibonacci[n+1]; If[PrimeQ[f]&&PrimeQ[l], Print[{f,l}]], {n,10000}]
    nn=1000;Transpose[Select[Thread[{Fibonacci[Range[nn]], LucasL[ Range[nn]]}],And@@PrimeQ[#]&]][[2]] (* Harvey P. Dale, Jul 08 2011 *)

Extensions

a(1) and example corrected by Harvey P. Dale, Jul 08 2011

A052012 Number of primes between successive Lucas numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 4, 6, 9, 15, 20, 31, 48, 72, 110, 170, 257, 400, 608, 950, 1448, 2256, 3487, 5413, 8440, 13118, 20478, 31932, 49995, 78222, 122553, 192262, 301826, 474039, 745772, 1173270, 1848000, 2912623, 4593723, 7249438, 11448047
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Examples

			Between L(7)=29 and L(8)=47 we find the following primes: 31, 37, 41 and 43 hence a(7)=4.
		

Crossrefs

Programs

  • Haskell
    a052012 n = a052012_list !! (n-1)
    a052012_list = c 1 0 $ tail a000204_list where
      c x y ls'@(l:ls) | x < l     = c (x+1) (y + a010051 x) ls'
                       | otherwise = y : c (x+1) 0 ls
    -- Reinhard Zumkeller, Dec 18 2011
  • Mathematica
    PrimePi[Last[#]-1]-PrimePi[First[#]]&/@Partition[LucasL[ Range[45]],2,1] (* Harvey P. Dale, Jun 28 2011 *)

Formula

a(n) = pi(L(n + 1) - 1) - pi(L(n)), where pi is the prime counting function (A000720) and L = A000032. - Wesley Ivan Hurt, Nov 09 2023
a(n) = A277062(n+1) - A277062(n) - [n+1 in A001606], where [] denotes the Iverson bracket. - Amiram Eldar, Jun 10 2024

A277062 Number of primes <= n-th Lucas number.

Original entry on oeis.org

1, 0, 2, 2, 4, 5, 7, 10, 15, 21, 30, 46, 66, 98, 146, 218, 329, 500, 757, 1158, 1766, 2716, 4164, 6420, 9907, 15320, 23760, 36878, 57356, 89288, 139283, 217506, 340059, 532321, 834147, 1308186, 2053958, 3227229, 5075229, 7987852, 12581575, 19831014
Offset: 0

Views

Author

Vincenzo Librandi, Nov 09 2016

Keywords

Crossrefs

Programs

  • Magma
    [#PrimesUpTo(Lucas(n)): n in [0..41]];
  • Maple
    a:= n-> numtheory[pi]((<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]):
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 09 2016
  • Mathematica
    Table[PrimePi[LucasL[n]], {n, 0, 50}]

Formula

a(n) = A000720(A000032(n)). - Michel Marcus, Jun 10 2024
Showing 1-10 of 45 results. Next