A002522 a(n) = n^2 + 1.
1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501
Offset: 0
Examples
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 17*x^4 + 26*x^5 + 37*x^6 + 50*x^7 + 65*x^8 + ...
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
- E. Gura and M. Maschler, Insights into Game Theory: An Alternative Mathematical Experience, Cambridge, 2008; p. 26.
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000. Format corrected by _Peter Kagey_, Jan 25 2016
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, On the Salient Regularities of Strings of Assembly Theory, Preprints (2024). See p. 19.
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025). See p. 28.
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 44, 56.
- Giulio Cerbai and Luca Ferrari, Permutation patterns in genome rearrangement problems: the reversal model, arXiv:1903.08774 [math.CO], 2019. See p. 19.
- S. Chaiken et al., Nonattacking Queens in a Rectangular Strip, arXiv:1105.5087 [math.CO], 2011.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
- R. M. Green and Tianyuan Xu, 2-roots for simply laced Weyl groups, arXiv:2204.09765 [math.RT], 2022.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv:1410.2657 [math.CO], 2014.
- C. Homberger and V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv:1308.4946 [math.CO], 2013.
- L. B. W. Jolley, Summation of Series, Dover, 1961, p. 176.
- S. J. Leon, Linear Algebra with Applications: the Perron-Frobenius Theorem [Cached copy at the Wayback Machine]
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv:1508.07894 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Number Picking
- Eric Weisstein's World of Mathematics, Near-Square Prime
- Helmut Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642-648. volume 52
- Reinhard Zumkeller, Enumerations of Divisors
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Left edge of A055096.
a(n+1) = A101220(n, n+1, 3).
Cf. A059592, A124808, A132411, A132414, A028872, A005408, A000124, A016813, A086514, A000125, A058331, A080856, A000127, A161701-A161704, A161706, A161707, A161708, A161710-A161713, A161715, A006261.
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), this sequence (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A002496 (primes).
Cf. A254858.
Subsequence of A031396.
Programs
-
Haskell
a002522 = (+ 1) . (^ 2) a002522_list = scanl (+) 1 [1,3..] -- Reinhard Zumkeller, Apr 06 2012
-
Magma
[n^2 + 1: n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
Maple
A002522 := proc(n) numtheory[cyclotomic](4,n) ; end proc: seq(A002522(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
-
Mathematica
Table[n^2 + 1, {n, 0, 50}]; (* Vladimir Joseph Stephan Orlovsky, Dec 15 2008 *)
-
Maxima
A002522(n):=n^2+1$ makelist(A002522(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
a(n)=n^2+1 \\ Charles R Greathouse IV, Jun 10 2011
Formula
O.g.f.: (1-x+2*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
Sequences of the form a(n) = n^2 + K with offset 0 have o.g.f. (K - 2*K*x + K*x^2 + x + x^2)/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a*(n-3). - R. J. Mathar, Apr 28 2008
a(n)*a(n-2) = (n-1)^4 + 4. - Reinhard Zumkeller, Feb 12 2009
From Reinhard Zumkeller, Mar 08 2010: (Start)
For n > 1, a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n - 2)^2 + (a(n) + n - 1 + a(n) + n)^2 = (n+1) *(6*n^4 + 18*n^3 + 26*n^2 + 19*n + 6) / 6 = (a(n) + n)^2 + ... + (a(n) + 2*n)^2. - Charlie Marion, Jan 10 2011
From Eric Werley, Jun 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2.
a(n) = a(n-1) + 2*n - 1. (End)
a(n) = (n-1)^2 + 2(n-1) + 2 = 122 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
a(n)*a(n+1) = a(n*(n+1) + 1) so a(1)*a(2) = a(3). More generally, a(n)*a(n+k) = a(n*(n+k) + 1) + k^2 - 1. - Jon Perry, Aug 01 2012
a(n) = (n!)^2* [x^n] BesselI(0, 2*sqrt(x))*(1+x). - Peter Luschny, Aug 25 2012
a(n) = A070216(n,1) for n > 0. - Reinhard Zumkeller, Nov 11 2012
E.g.f.: exp(x)*(1 + x + x^2). - Geoffrey Critzer, Aug 30 2013
a(n) = A254858(n-2,3) for n > 2. - Reinhard Zumkeller, Feb 09 2015
Sum_{n>=0} (-1)^n / a(n) = (1+Pi/sinh(Pi))/2 = 0.636014527491... = A367976 . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/2 = 2.076674... = A113319. - Vaclav Kotesovec, Apr 10 2016
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi)*sinh(sqrt(2)*Pi).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi). (End)
Sum_{n>=0} a(n)/n! = 3*e. - Davide Rotondo, Feb 16 2025
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments