A008542
Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).
Original entry on oeis.org
1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0
Joe Keane (jgk(AT)jgk.org)
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A045754 (and
A084947,
A114799),
A045755.
-
List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
-
[1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
-
a := n -> mul(6*k+1, k=0..n-1);
G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
-
Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
-
a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
-
[product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
A034835
Expansion of 1/(1-49*x)^(1/7); related to sept-factorial numbers A045754.
Original entry on oeis.org
1, 7, 196, 6860, 264110, 10722866, 450360372, 19365495996, 847240449825, 37560993275575, 1682732498745760, 76028913806967520, 3459315578217022160, 158330213003009860400, 7283189798138453578400, 336483368673996555322080, 15604416222256590253061460, 726064307753233111186565580
Offset: 0
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!(1/(1 - 49*x)^(1/7))); // G. C. Greubel, Feb 22 2018
-
CoefficientList[Series[1/(1 - 49*x)^(1/7), {x,0,50}], x] (* G. C. Greubel, Feb 22 2018 *)
-
my(x='x+O('x^30)); Vec(1/(1 - 49*x)^(1/7)) \\ G. C. Greubel, Feb 22 2018
A034385
Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.
Original entry on oeis.org
1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0
-
CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)
A004996
a(n) = 6^n/n! * Product_{k=0..n-1} (6*k - 1).
Original entry on oeis.org
1, -6, -90, -1980, -50490, -1393524, -40412196, -1212365880, -37280250810, -1168114525380, -37146041907084, -1195427166827976, -38851382921909220, -1273129932671794440, -42013287778169216520
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
List([0..20], n-> 6^n*Product([0..n-1], k-> 6*k-1)/Factorial(n) ); # G. C. Greubel, Aug 20 2019
-
[1] cat [6^n*(&*[6*k-1: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 20 2019
-
seq(6^n*product(6*k-1, k = 0..n-1)/n!, n = 0..20); # G. C. Greubel, Aug 20 2019
-
Table[6^(2*n)*Pochhammer[-1/6, n]/n!, {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
-
vector(20, n, n--; 6^n*prod(j=0,n-1, 6*j-1)/n! ) \\ G. C. Greubel, Aug 20 2019
-
[6^(2*n)*rising_factorial(-1/6, n)/factorial(n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
A034977
Expansion of 1/(1-64*x)^(1/8), related to octo-factorial numbers A045755.
Original entry on oeis.org
1, 8, 288, 13056, 652800, 34467840, 1884241920, 105517547520, 6014500208640, 347504456499200, 20294260259553280, 1195516422562775040, 70933974405391319040, 4234212626044897198080, 254052757562693831884800, 15310912855778348268257280, 926310227774590070229565440
Offset: 0
-
[n le 1 select 8^(n-1) else 8*(8*n-15)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
CoefficientList[Series[1/(1-64x)^(1/8),{x,0,30}],x] (* Harvey P. Dale, May 20 2011 *)
-
[2^(6*n)*rising_factorial(1/8,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022
A224881
Expansion of 1/(1 - 16*x)^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
-
List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
-
CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
-
{a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
for(n=0,30,print1(a(n),", "))
A298799
Expansion of (1-27*x)^(-1/9).
Original entry on oeis.org
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
-
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
# Alternative:
A298799 := n -> (-27)^n*binomial(-1/9, n):
seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
A035308
Expansion of 1/(1-100*x)^(1/10), related to deca-factorial numbers A045757.
Original entry on oeis.org
1, 10, 550, 38500, 2983750, 244667500, 20796737500, 1812287125000, 160840482343750, 14475643410937500, 1317283550395312500, 120950580536296875000, 11187928699607460937500, 1041337978963463671875000, 97439482317295529296875000, 9159311337825779753906250000
Offset: 0
-
CoefficientList[Series[1/(1-100*x)^(1/10), {x, 0, 20}], x] (* Amiram Eldar, Aug 18 2025 *)
A248328
Square array read by antidiagonals downwards: super Patalan numbers of order 6.
Original entry on oeis.org
1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
Offset: 0
T(0..4,0..4) is
1 6 126 3276 93366
30 90 1260 24570 560196
990 1980 20790 324324 6162156
33660 50490 424116 5513508 89791416
1161270 1393524 9754668 108694872 1548901926
Cf.
A068555,
A025751,
A004993 (first row),
A004994 (first column),
A004995 (second row),
A004996 (second column),
A248324,
A248325,
A248326,
A248329,
A248332.
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ Michel Marcus, Oct 09 2014
A034789
Related to sextic factorial numbers A008542.
Original entry on oeis.org
1, 21, 546, 15561, 466830, 14471730, 458960580, 14801478705, 483514971030, 15955994043990, 530899438190940, 17785131179396490, 599222112044281740, 20287948650642110340, 689790254121831751560, 23539092421907508521985, 805867752326480585870310, 27668126163209166781547310
Offset: 1
-
List([1..20], n-> 6^(n-1)*Product([1..n], j-> 6*j-5)/Factorial(n) ); # G. C. Greubel, Nov 11 2019
-
[6^(n-1)*(&*[6*j-5: j in [1..n]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( 6^(n-1)*mul(6*j-5, j=1..n)/n!, n=1..20); # G. C. Greubel, Nov 11 2019
-
Rest@ CoefficientList[Series[(-1 + (1 - 36 x)^(-1/6))/6, {x, 0, 16}], x] (* Michael De Vlieger, Oct 13 2019 *)
Table[6^(2*n-1)*Pochhammer[1/6, n]/n!, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, 6^(n-1)*prod(j=1,n, 6*j-5)/n! ) \\ G. C. Greubel, Nov 11 2019
-
[6^(n-1)*product( (6*j-5) for j in (1..n))/factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
Showing 1-10 of 10 results.
Comments