A005448 Centered triangular numbers: a(n) = 3*n*(n-1)/2 + 1.
1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, 3106, 3244, 3385, 3529
Offset: 1
Examples
From _Seiichi Manyama_, Aug 12 2017: (Start) a(1) = 1: * / \ / \ / \ *-------* ................................................. a(2) = 4: * / \ / \ / \ *---*---* / \ * / \ * / \ / \ / \ / *-------* \ / \ / \ *-------* *-------* ................................................. a(3) = 10: * / \ / \ / \ *---*---* / \ * / \ * / \ / \ / \ / *---*---* \ / \ / \ / \ *---*---* *---*---* / \ / \ / \ * / *---*---* \ * / \ / \ / \ / \ / \ / *-------* *-------* \ / \ / \ / \ *-------* *-------* *-------* ................................................. a(4) = 19: * / \ / \ / \ *---*---* / \ * / \ * / \ / \ / \ / *---*---* \ / \ / \ / \ *---*---* *---*---* / \ / \ / \ * / \---*---* \ * / \ / \ / \ / \ / \ / *---*---* *---*---* \ / \ / \ / \ / \ / \ *---*---* *---*---* *---*---* / \ / \ / \ / \ / \ * / *---*---* *---*---* \ * / \ / \ / \ / \ / \ / \ / \ / *-------* *-------* *-------* \ / \ / \ / \ / \ *-------* *-------* *-------* *-------* (End)
References
- R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv:1510.08036 [math.CO], 2015.
- Jarosław Grytczuk, Bartłomiej Pawlik, and Mariusz Pleszczyński, Variations on shuffle squares, arXiv:2308.13882 [math.CO], 2023. See p. 11.
- F. Javier de Vega, On the parabolic partitions of a number, J. Alg., Num. Theor., and Appl. (2023) Vol. 61, No. 2, 135-169.
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.
- Milan Janjic, Two Enumerative Functions
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Kival Ngaokrajang, Illustration of triangles expansion
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]
- Leo Tavares, Illustration: Triple Triangles
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Centered Triangular Number
- Julie Zhang, Noah A. Rosenberg, and Julia A. Palacios, The space of multifurcating ranked tree shapes: enumeration, lattice structure, and Markov chains, arXiv:2506.10856 [math.PR], 2025. See p. 33.
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a005448 n = 3 * n * (n - 1) `div` 2 + 1 a005448_list = 1 : zipWith (+) a005448_list [3, 6 ..] -- Reinhard Zumkeller, Jun 20 2013
-
Magma
I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
-
Maple
A005448 := n->(3*(n-1)^2+3*(n-1)+2)/2: seq(A005448(n), n=1..100); A005448 := -(1+z+z**2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation for offset 0
-
Mathematica
FoldList[#1 + #2 &, 1, 3 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *) Join[{1,4},Total/@Partition[Accumulate[Range[50]],3,1]] (* Harvey P. Dale, Aug 17 2012 *) LinearRecurrence[{3, -3, 1}, {1, 4, 10}, 50] (* Vincenzo Librandi, Sep 13 2015 *) Table[ j! Coefficient[Series[Exp[x]*(1 + 3 x^2/2)-1, {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *) 3#+1&/@Accumulate[Range[0,50]] (* Harvey P. Dale, Nov 20 2024 *)
-
PARI
{a(n)=3*(n^2-n)/2+1} /* Michael Somos, Sep 23 2006 */
-
PARI
isok(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ Michel Marcus, May 20 2020
Formula
Expansion of x*(1-x^3)/(1-x)^4.
a(n) = C(n+3, 3)-C(n, 3) = C(n, 0)+3*C(n, 1)+3*C(n, 2). - Paul Barry, Jul 01 2003
a(n) = 1 + Sum_{j=0..n-1} (3*j). - Xavier Acloque, Oct 25 2003
Euler transform of length 3 sequence [4, 0, -1]. - Michael Somos, Sep 23 2006
a(1-n) = a(n). - Michael Somos, Sep 23 2006
a(n) = binomial(n+1,n-1) + binomial(n,n-2) + binomial(n-1,n-3). - Zerinvary Lajos, Sep 03 2006
Row sums of triangle A134482. - Gary W. Adamson, Oct 27 2007
Narayana transform (A001263) * [1, 3, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=4, a(3)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-3. - Vincenzo Librandi, Nov 18 2010
a(n) = 2*a(n-1) - a(n-2) + 3. - Ant King, Jun 12 2012
a(n) = A101321(3,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: -1 + (2 + 3*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 5*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 5/(2*e) - 1. (End)
a(n) = A000326(n) - n + 1. - Charlie Marion, Nov 21 2020
Comments