A182093 Partial sums of A005590.
0, 1, 2, 2, 3, 2, 2, 3, 4, 2, 1, 2, 2, 3, 4, 4, 5, 2, 0, 1, 0, 2, 3, 2, 2, 3, 4, 4, 5, 4, 4, 5, 6, 2, -1, 0, -2, 1, 2, 0, -1, 2, 4, 3, 4, 2, 1, 2, 2, 3, 4, 4, 5, 4, 4, 5, 6, 4, 3, 4, 4, 5, 6, 6, 7, 2, -2, -1, -4, 0, 1, -2, -4, 1, 4, 2, 3, 0, -2, -1, -2, 2, 5
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A005590.
Programs
-
Haskell
a182093 n = a182093_list !! n a182093_list = scanl1 (+) a005590_list
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[OddQ@ n, a[(n - 1)/2 + 1] - a[(n - 1)/2], a[n/2]]; Accumulate@ Table[a@ n, {n, 0, 104}] (* after Jean-François Alcover at A005590, or *) Table[SeriesCoefficient[(x/(1 - x)) Product[(1 + x^(2^k) - x^(2^(k + 1))), {k, 0, n}], {x, 0, n}], {n, 0, 70}] (* Michael De Vlieger, Feb 27 2017 *)
Formula
a(2^n) = n + 1.
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) - x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
Comments