A070775
a(n) = Sum_{k=0..n} binomial(4*n,4*k).
Original entry on oeis.org
1, 2, 72, 992, 16512, 261632, 4196352, 67100672, 1073774592, 17179738112, 274878431232, 4398044413952, 70368752566272, 1125899873288192, 18014398643699712, 288230375614840832, 4611686020574871552, 73786976286248271872, 1180591620751771041792, 18889465931341141901312
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3), this sequence (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
a := n -> if n = 0 then 1 else 4^(n - 1)*(2*(-1)^n + 4^n) fi:
seq(a(n), n = 0..19); # Peter Luschny, Jul 02 2022
-
Table[Sum[Binomial[4n,4k],{k,0,n}],{n,0,30}] (* or *) Join[{1}, LinearRecurrence[{12,64},{2,72},30]] (* Harvey P. Dale, Apr 24 2011 *)
-
a(n)=sum(k=0,n,binomial(4*n,4*k))
-
N=66; x='x+O('x^N); Vec((1-10*x-16*x^2)/((1-16*x)*(1+4*x))) \\ Seiichi Manyama, Mar 15 2019
A102518
a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=0..k} binomial(3k, 3j).
Original entry on oeis.org
1, 3, 27, 243, 2187, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 94143178827, 847288609443, 7625597484987, 68630377364883, 617673396283947, 5559060566555523, 50031545098999707, 450283905890997363, 4052555153018976267, 36472996377170786403
Offset: 0
A070782
a(n) = Sum_{k=0..n} binomial(5*n,5*k).
Original entry on oeis.org
1, 2, 254, 6008, 215766, 6643782, 215492564, 6863694378, 219993856006, 7035859329512, 225191238869774, 7205634556190798, 230585685502492596, 7378682274243863442, 236118494435702913134, 7555784484021765207768, 241785184867484394069286, 7737125013254912900576822
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4), this sequence (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
LinearRecurrence[{21,353,-32},{1,2,254},20] (* Harvey P. Dale, Jun 18 2023 *)
-
a(n)=sum(k=0,n,binomial(5*n,5*k))
-
Vec((1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)) + O(x^20)) \\ Colin Barker, May 27 2019
A082311
A Jacobsthal sequence trisection.
Original entry on oeis.org
1, 5, 43, 341, 2731, 21845, 174763, 1398101, 11184811, 89478485, 715827883, 5726623061, 45812984491, 366503875925, 2932031007403, 23456248059221, 187649984473771, 1501199875790165, 12009599006321323, 96076792050570581, 768614336404564651, 6148914691236517205
Offset: 0
A070832
a(n) = Sum_{k=0..n} binomial(8*n,8*k).
Original entry on oeis.org
1, 2, 12872, 1470944, 622116992, 125858012672, 36758056208384, 8793364151263232, 2334899414608412672, 586347560750962049024, 151652224498623981289472, 38612725801339748322639872, 9913426188311626771400228864
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7), this sequence (b=8),
A094213 (b=9),
A070833 (b=10).
-
Table[Sum[Binomial[8n,8k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Nov 25 2020 *)
-
a(n)=sum(k=0,n,binomial(8*n,8*k)); \\ Benoit Cloitre, May 27 2004
-
Vec((1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)) + O(x^15)) \\ Colin Barker, May 27 2019
A070967
a(n) = Sum_{k=0..n} binomial(6*n,6*k).
Original entry on oeis.org
1, 2, 926, 37130, 2973350, 174174002, 11582386286, 729520967450, 47006639297270, 2999857885752002, 192222214478506046, 12295976362284182570, 787111112023373201990, 50370558298891875954002, 3223838658635388303336206, 206322355109994528871954490
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 16 2002
- Matthijs Coster, Supercongruences, Thesis, Jun 08, 1988.
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5), this sequence (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
Table[Sum[Binomial[6n,6k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {38,1691,-1728},{1,2,926,37130},30] (* Harvey P. Dale, Jun 19 2021 *)
-
a(n)=sum(k=0,n,binomial(6*n,6*k))
-
a(n)=if(n<0,0,(2*(-27)^n+2+64^n+0^n)/6)
-
a(n)=if(n<0,0,polsym(x*(x-64)*(x+27)^2*(x-1)^2,n)[n+1]/6)
A070833
a(n) = Sum_{k=0..n} binomial(10*n,10*k).
Original entry on oeis.org
1, 2, 184758, 60090032, 139541849878, 94278969044262, 126648421364527548, 111019250117021378442, 125257104438594491956518, 121088185204450642433930072, 128442558588779813655233443038, 128767440665677943753184267342902
Offset: 0
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8),
A094213 (b=9), this sequence (b=10). Cf.
A000032.
-
a(n) = sum(k=0, n, binomial(10*n, 10*k)); \\ Michel Marcus, Mar 15 2019
-
Vec((1 - 520*x - 404083*x^2 + 37605988*x^3 + 117888625*x^4 - 320000*x^5) / ((1 - 1024*x)*(1 - 123*x + x^2)*(1 + 625*x + 3125*x^2)) + O(x^15)) \\ Colin Barker, Mar 15 2019
A094211
a(n) = Sum_{k=0..n} binomial(7*n,7*k).
Original entry on oeis.org
1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, 79450506979090, 10353832741654602, 1313930226050847938, 168883831255263816554, 21573903987107973878962, 2764126124873404346104778, 353643666623193292098680930, 45276535087893983968685884906
Offset: 0
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6), this sequence (b=7),
A070832 (b=8),
A094213 (b=9),
A070833 (b=10).
-
A094211:=n->add(binomial(7*n,7*k), k=0..n): seq(A094211(n), n=0..20); # Wesley Ivan Hurt, Feb 16 2017
-
Table[Sum[Binomial[7n,7k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {71,7585,-36991,-128},{1,2,3434,232562},20] (* Harvey P. Dale, May 06 2012 *)
-
a(n)=sum(k=0,n,binomial(7*n,7*k))
A094213
a(n) = Sum_{k=0..n} binomial(9*n,9*k).
Original entry on oeis.org
1, 2, 48622, 9373652, 9263421862, 3433541316152, 2140802758677844, 984101481334553024, 536617781178725122150, 265166261617029717011822, 138567978655457801631498052, 70126939586658252408697345838, 36144812798331420987905742371116
Offset: 0
Sum_{k=0..n} binomial(b*n,b*k):
A000079 (b=1),
A081294 (b=2),
A007613 (b=3),
A070775 (b=4),
A070782 (b=5),
A070967 (b=6),
A094211 (b=7),
A070832 (b=8), this sequence (b=9),
A070833 (b=10).
-
Table[Sum[Binomial[9n,9k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Jul 14 2019 *)
-
a(n)=sum(k=0,n,binomial(9*n,9*k))
-
Vec((1 - 263*x - 91731*x^2 + 3035380*x^3 + 1547833*x^4) / ((1 + x)*(1 - 512*x)*(1 + 246*x - 13605*x^2 + x^3)) + O(x^15)) \\ Colin Barker, May 27 2019
A216316
G.f.: 1/( (1-8*x)*(1+x)^2 )^(1/3).
Original entry on oeis.org
1, 2, 13, 80, 538, 3740, 26650, 193160, 1417945, 10511450, 78533629, 590485208, 4463274232, 33886781840, 258260802232, 1974759985952, 15143163422794, 116417053435316, 896996316176290, 6925241271855296, 53562550587963052, 414948608904171464, 3219356873886333676
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 80*x^3 + 538*x^4 + 3740*x^5 + 26650*x^6 +...
where 1/A(x)^3 = 1 - 6*x - 15*x^2 - 8*x^3.
The logarithm of the g.f. begins:
log(A(x)) = 2*x + 22*x^2/2 + 170*x^3/3 + 1366*x^4/4 + 10922*x^5/5 + 87382*x^6/6 +...+ A007613(n)*x^n/n +...
-
CoefficientList[Series[1/((1-8*x)*(1+x)^2)^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=polcoeff(1/( (1-8*x)*(1+x)^2 +x*O(x^n) )^(1/3),n)}
-
{a(n)=local(A=1+x); A=exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, 3*j))*x^m/m +x*O(x^n))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
Showing 1-10 of 20 results.
Comments
. - Sean A. Irvine, Nov 09 2024