cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A070775 a(n) = Sum_{k=0..n} binomial(4*n,4*k).

Original entry on oeis.org

1, 2, 72, 992, 16512, 261632, 4196352, 67100672, 1073774592, 17179738112, 274878431232, 4398044413952, 70368752566272, 1125899873288192, 18014398643699712, 288230375614840832, 4611686020574871552, 73786976286248271872, 1180591620751771041792, 18889465931341141901312
Offset: 0

Views

Author

Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002

Keywords

Comments

Also the cogrowth sequence of the 16-element group C4 X C4 = . - Sean A. Irvine, Nov 09 2024

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), this sequence (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).

Programs

  • Maple
    a := n -> if n = 0 then 1 else 4^(n - 1)*(2*(-1)^n + 4^n) fi:
    seq(a(n), n = 0..19); # Peter Luschny, Jul 02 2022
  • Mathematica
    Table[Sum[Binomial[4n,4k],{k,0,n}],{n,0,30}] (* or *) Join[{1}, LinearRecurrence[{12,64},{2,72},30]] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    a(n)=sum(k=0,n,binomial(4*n,4*k))
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-10*x-16*x^2)/((1-16*x)*(1+4*x))) \\ Seiichi Manyama, Mar 15 2019

Formula

a(n) = (1/2)*(-4)^n + (1/4)*16^n for n > 0.
Let b(n) = a(n) - 2^(4n)/4 then b(n+1) = 4*b(n) - Benoit Cloitre, May 27 2004
G.f.: (1 - 10*x - 16*x^2)/((1-16*x)*(1+4*x)). - Seiichi Manyama, Mar 15 2019
G.f.: ((cos(x) + cosh(x))/2)^2 = Sum_{n >= 0} a(n)*x(4*n)/(4*n)!. - Peter Bala, Jun 20 2022

A102518 a(n) = Sum_{k=0..n} binomial(n, k) * Sum_{j=0..k} binomial(3k, 3j).

Original entry on oeis.org

1, 3, 27, 243, 2187, 19683, 177147, 1594323, 14348907, 129140163, 1162261467, 10460353203, 94143178827, 847288609443, 7625597484987, 68630377364883, 617673396283947, 5559060566555523, 50031545098999707, 450283905890997363, 4052555153018976267, 36472996377170786403
Offset: 0

Views

Author

Paul Barry, Jan 13 2005

Keywords

Comments

Binomial transform of A007613.
a(n+1) is the smallest number with a reciprocal with repeating decimal of period a(n). - Matthew Goers, Nov 09 2017
a(n) is the number of walks of 2n steps on the utility graph that start and end at the same vertex (excursions). A001019(n) is the number of 2n+1-step walks on the utility graph that end at one of the 3 adjacent vertices. A013708(n) is the number of 2n+2-step walks that end at one of the 2 remote vertices (at distance 2). The number of n-step walks on the utility (3-regular) graph, summed over all 3 types of final vertices, is 3^n. - R. J. Mathar, Nov 03 2020

Crossrefs

Programs

  • Mathematica
    Join[{1},NestList[9#&,3,20]] (* Harvey P. Dale, Feb 03 2021 *)
  • PARI
    Vec((1-6*x)/(1-9*x) + O(x^30)) \\ Colin Barker, Mar 17 2016

Formula

a(n) = 3^(2*n-1) + 2*0^k/3; a(n+1) = A013708(n).
G.f.: (1-6*x) / (1-9*x). - Colin Barker, Mar 17 2016
E.g.f.: (exp(9*x) + 2)/3. - Stefano Spezia, Jul 09 2024

A070782 a(n) = Sum_{k=0..n} binomial(5*n,5*k).

Original entry on oeis.org

1, 2, 254, 6008, 215766, 6643782, 215492564, 6863694378, 219993856006, 7035859329512, 225191238869774, 7205634556190798, 230585685502492596, 7378682274243863442, 236118494435702913134, 7555784484021765207768, 241785184867484394069286, 7737125013254912900576822
Offset: 0

Views

Author

Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002

Keywords

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), this sequence (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).

Programs

  • Mathematica
    LinearRecurrence[{21,353,-32},{1,2,254},20] (* Harvey P. Dale, Jun 18 2023 *)
  • PARI
    a(n)=sum(k=0,n,binomial(5*n,5*k))
    
  • PARI
    Vec((1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)) + O(x^20)) \\ Colin Barker, May 27 2019

Formula

a(n) = (1/5)*32^n + (2/5)*(-11/2 + (5/2)*sqrt(5))^n + (2/5)*(-11/2 - (5/2)*sqrt(5))^n.
Let b(n) = a(n) - 2^(5n)/5; then b(n) + 11*b(n-1) - b(n-2) = 0. - Benoit Cloitre, May 27 2004
From Colin Barker, May 27 2019: (Start)
G.f.: (1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>2.
(End)

A082311 A Jacobsthal sequence trisection.

Original entry on oeis.org

1, 5, 43, 341, 2731, 21845, 174763, 1398101, 11184811, 89478485, 715827883, 5726623061, 45812984491, 366503875925, 2932031007403, 23456248059221, 187649984473771, 1501199875790165, 12009599006321323, 96076792050570581, 768614336404564651, 6148914691236517205
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Crossrefs

Programs

  • Magma
    [2*8^n/3+(-1)^n/3 : n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    f[n_] := (2*8^n + (-1)^n)/3; Array[f, 25, 0] (* Robert G. Wilson v, Aug 13 2011 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)/((1+x)*(1-8*x))) \\ G. C. Greubel, Sep 16 2018

Formula

a(n) = (2*8^n + (-1)^n)/3 = A001045(3*n+1).
From R. J. Mathar, Feb 23 2009: (Start)
a(n) = 7*a(n-1) + 8*a(n-2).
G.f.: (1-2*x)/((1+x)*(1-8*x)). (End)
a(n) = A024494(3*n+1). a(n) = 8*a(n-1) + 3*(-1)^n. Sum of digits = A070366. - Paul Curtz, Nov 20 2007
a(n)= A007613(n) + A132805(n) = A081374(1+3*n). - Paul Curtz, Jun 06 2011
E.g.f.: (cosh(x) + 2*cosh(8*x) - sinh(x) + 2*sinh(8*x))/3. - Stefano Spezia, Jul 15 2024

A070832 a(n) = Sum_{k=0..n} binomial(8*n,8*k).

Original entry on oeis.org

1, 2, 12872, 1470944, 622116992, 125858012672, 36758056208384, 8793364151263232, 2334899414608412672, 586347560750962049024, 151652224498623981289472, 38612725801339748322639872, 9913426188311626771400228864
Offset: 0

Views

Author

Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002

Keywords

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), this sequence (b=8), A094213 (b=9), A070833 (b=10).

Programs

  • Mathematica
    Table[Sum[Binomial[8n,8k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Nov 25 2020 *)
  • PARI
    a(n)=sum(k=0,n,binomial(8*n,8*k)); \\ Benoit Cloitre, May 27 2004
    
  • PARI
    Vec((1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)) + O(x^15)) \\ Colin Barker, May 27 2019

Formula

Let b(n) = a(n)-2^(8*n)/8 then b(n)+120*b(n-1)-2160*b(n-2)-256*b(n-3)=0. - Benoit Cloitre, May 27 2004
a(n) = 1/4*16^n + 1/8*256^n + 1/4*(-68 + 48*sqrt(2))^n + 1/4*(-68-48*sqrt(2))^n.
From Colin Barker, May 27 2019: (Start)
G.f.: (1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>4.
(End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007

A070967 a(n) = Sum_{k=0..n} binomial(6*n,6*k).

Original entry on oeis.org

1, 2, 926, 37130, 2973350, 174174002, 11582386286, 729520967450, 47006639297270, 2999857885752002, 192222214478506046, 12295976362284182570, 787111112023373201990, 50370558298891875954002, 3223838658635388303336206, 206322355109994528871954490
Offset: 0

Views

Author

Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 16 2002

Keywords

References

  • Matthijs Coster, Supercongruences, Thesis, Jun 08, 1988.

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), this sequence (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).

Programs

  • Mathematica
    Table[Sum[Binomial[6n,6k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {38,1691,-1728},{1,2,926,37130},30] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    a(n)=sum(k=0,n,binomial(6*n,6*k))
    
  • PARI
    a(n)=if(n<0,0,(2*(-27)^n+2+64^n+0^n)/6)
    
  • PARI
    a(n)=if(n<0,0,polsym(x*(x-64)*(x+27)^2*(x-1)^2,n)[n+1]/6)

Formula

G.f.: (1-36x-841x^2+288x^3)/((1-x)*(1+27x)*(1-64x)).
a(n) = ((-27)^n + 1)/3 + (64^n + 0^n)/6.
Let b(n) = a(n)-2^(6n)/6 then b(n)+26*b(n-1)-27*b(n-2) = 0. - Benoit Cloitre, May 27 2004

A070833 a(n) = Sum_{k=0..n} binomial(10*n,10*k).

Original entry on oeis.org

1, 2, 184758, 60090032, 139541849878, 94278969044262, 126648421364527548, 111019250117021378442, 125257104438594491956518, 121088185204450642433930072, 128442558588779813655233443038, 128767440665677943753184267342902
Offset: 0

Views

Author

Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002

Keywords

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), this sequence (b=10). Cf. A000032.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(10*n, 10*k)); \\ Michel Marcus, Mar 15 2019
    
  • PARI
    Vec((1 - 520*x - 404083*x^2 + 37605988*x^3 + 117888625*x^4 - 320000*x^5) / ((1 - 1024*x)*(1 - 123*x + x^2)*(1 + 625*x + 3125*x^2)) + O(x^15)) \\ Colin Barker, Mar 15 2019

Formula

a(n) = 1/10*1024^n+1/5*(-625/2+275/2*sqrt(5))^n+1/5*(-625/2-275/2*sqrt(5))^n+1/5*(123/2+55/2*sqrt(5))^n+1/5*(123/2-55/2*sqrt(5))^n.
G.f.: (1 - 520*x - 404083*x^2 + 37605988*x^3 + 117888625*x^4 - 320000*x^5) / ((1 - 1024*x)*(1 - 123*x + x^2)*(1 + 625*x + 3125*x^2)). - Colin Barker, Mar 15 2019
a(2*n) = (2^(20*n-1) + Lucas(20*n) + 5^(5*n)*Lucas(10*n))/5, for n>0 and for Lucas(n) = A000032(n). - Greg Dresden, Feb 04 2023

A094211 a(n) = Sum_{k=0..n} binomial(7*n,7*k).

Original entry on oeis.org

1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, 79450506979090, 10353832741654602, 1313930226050847938, 168883831255263816554, 21573903987107973878962, 2764126124873404346104778, 353643666623193292098680930, 45276535087893983968685884906
Offset: 0

Views

Author

Benoit Cloitre, May 27 2004

Keywords

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), A070967 (b=6), this sequence (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).

Programs

  • Maple
    A094211:=n->add(binomial(7*n,7*k), k=0..n): seq(A094211(n), n=0..20); # Wesley Ivan Hurt, Feb 16 2017
  • Mathematica
    Table[Sum[Binomial[7n,7k],{k,0,n}],{n,0,20}] (* or *) LinearRecurrence[ {71,7585,-36991,-128},{1,2,3434,232562},20] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    a(n)=sum(k=0,n,binomial(7*n,7*k))

Formula

Let b(n) = a(n) - 2^(7n)/7; then b(n) + 57*b(n-1) - 289*b(n-2) - b(n-3) = 0.
a(n) = 71*a(n-1) + 7585*a(n-2) - 36991*a(n-3) - 128*a(n-4); a(0)=1, a(1)=2, a(2)=3434, a(3)=232562. - Harvey P. Dale, May 06 2012
G.f.: (1 - 69*x - 4293*x^2 + 10569*x^3) / ((1 - 128*x)*(1 + 57*x - 289*x^2 - x^3)). - Colin Barker, May 27 2019
a(n) = (1 + 2*(s*(3 - 4*s^2))^(7*n) + 2*(-1)^n*((1 - 2*s^2)^(7*n) + s^(7*n))) * 2^(7*n)/7, where s = sin(Pi/14). - Vaclav Kotesovec, Apr 17 2023

A094213 a(n) = Sum_{k=0..n} binomial(9*n,9*k).

Original entry on oeis.org

1, 2, 48622, 9373652, 9263421862, 3433541316152, 2140802758677844, 984101481334553024, 536617781178725122150, 265166261617029717011822, 138567978655457801631498052, 70126939586658252408697345838, 36144812798331420987905742371116
Offset: 0

Views

Author

Benoit Cloitre, May 27 2004

Keywords

Crossrefs

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), this sequence (b=9), A070833 (b=10).

Programs

  • Mathematica
    Table[Sum[Binomial[9n,9k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Jul 14 2019 *)
  • PARI
    a(n)=sum(k=0,n,binomial(9*n,9*k))
    
  • PARI
    Vec((1 - 263*x - 91731*x^2 + 3035380*x^3 + 1547833*x^4) / ((1 + x)*(1 - 512*x)*(1 + 246*x - 13605*x^2 + x^3)) + O(x^15)) \\ Colin Barker, May 27 2019

Formula

Let b(n) = a(n)-2^(9*n)/9 then b(n)+246*b(n-1)-13605*b(n-2)+b(n-3)+(-1)^n*3078=0.
Conjectures from Colin Barker, May 27 2019: (Start)
G.f.: (1 - 263*x - 91731*x^2 + 3035380*x^3 + 1547833*x^4) / ((1 + x)*(1 - 512*x)*(1 + 246*x - 13605*x^2 + x^3)).
a(n) = 265*a(n-1) + 139823*a(n-2) - 6826204*a(n-3) - 6965249*a(n-4) + 512*a(n-5) for n>4. (End)
a(n) ~ (1/9)*exp(n*9*log(2)) (conjecture). - Bill McEachen, Aug 11 2025

A216316 G.f.: 1/( (1-8*x)*(1+x)^2 )^(1/3).

Original entry on oeis.org

1, 2, 13, 80, 538, 3740, 26650, 193160, 1417945, 10511450, 78533629, 590485208, 4463274232, 33886781840, 258260802232, 1974759985952, 15143163422794, 116417053435316, 896996316176290, 6925241271855296, 53562550587963052, 414948608904171464, 3219356873886333676
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 80*x^3 + 538*x^4 + 3740*x^5 + 26650*x^6 +...
where 1/A(x)^3 = 1 - 6*x - 15*x^2 - 8*x^3.
The logarithm of the g.f. begins:
log(A(x)) = 2*x + 22*x^2/2 + 170*x^3/3 + 1366*x^4/4 + 10922*x^5/5 + 87382*x^6/6 +...+ A007613(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-8*x)*(1+x)^2)^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff(1/( (1-8*x)*(1+x)^2 +x*O(x^n) )^(1/3),n)}
    
  • PARI
    {a(n)=local(A=1+x); A=exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, 3*j))*x^m/m +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} A007613(n)*x^n/n ), where A007613(n) = Sum_{k=0..n} binomial(3*n,3*k).
Recurrence: n*a(n) = (7*n-5)*a(n-1) + 8*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ Gamma(2/3)*2^(3*n+1)/(3^(5/6)*Pi*n^(2/3)). - Vaclav Kotesovec, Oct 20 2012
Inverse binomial transform of A004987. - Peter Bala, Jul 02 2023
Showing 1-10 of 20 results. Next