cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A074600 a(n) = 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
Offset: 0

Views

Author

Robert G. Wilson v, Aug 25 2002

Keywords

Comments

Digital root of a(n) is A010697(n). - Peter M. Chema, Oct 24 2016

References

  • Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.

Crossrefs

Programs

Formula

a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009

A056020 Numbers that are congruent to +-1 mod 9.

Original entry on oeis.org

1, 8, 10, 17, 19, 26, 28, 35, 37, 44, 46, 53, 55, 62, 64, 71, 73, 80, 82, 89, 91, 98, 100, 107, 109, 116, 118, 125, 127, 134, 136, 143, 145, 152, 154, 161, 163, 170, 172, 179, 181, 188, 190, 197, 199, 206, 208, 215, 217, 224, 226, 233, 235, 242, 244, 251, 253
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Or, numbers k such that k^2 == 1 (mod 9).
Or, numbers k such that the iterative cycle j -> sum of digits of j^2 when started at k contains a 1. E.g., 8 -> 6+4 = 10 -> 1+0+0 = 1 and 17 -> 2+8+9 = 19 -> 3+6+1 = 10 -> 1+0+0 = 1. - Asher Auel, May 17 2001

Crossrefs

Cf. A007953, A047522 (n=1 or 7 mod 8), A090771 (n=1 or 9 mod 10).
Cf. A129805 (primes), A195042 (partial sums).
Cf. A381319 (general case mod n^2).

Programs

  • Haskell
    a056020 n = a056020_list !! (n-1)
    a05602_list = 1 : 8 : map (+ 9) a056020_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Mathematica
    Select[ Range[ 300 ], PowerMod[ #, 2, 3^2 ]==1& ]
    (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 8, 10}, 67] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    a(n)=9*(n>>1)+if(n%2,1,-1) \\ Charles R Greathouse IV, Jun 29 2011
    
  • PARI
    for(n=1,40,print1(9*n-8,", ",9*n-1,", ")) \\ Charles R Greathouse IV, Jun 29 2011
    

Formula

a(1) = 1; a(n) = 9(n-1) - a(n-1). - Rolf Pleisch, Jan 31 2008 [Offset corrected by Jon E. Schoenfield, Dec 22 2008]
From R. J. Mathar, Feb 10 2008: (Start)
O.g.f.: 1 + 5/(4(x+1)) + 27/(4(-1+x)) + 9/(2(-1+x)^2).
a(n+1) - a(n) = A010697(n). (End)
a(n) = (9*A132355(n) + 1)^(1/2). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = a(n-2) + 9, for n > 2.
a(n) = 9*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), n > 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/9)*cot(Pi/9) = A019676 * A019968. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((18*x - 9)*exp(x) + 5*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/9) (A332437).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/9)*cosec(Pi/9). (End)
From Mike Sheppard, Feb 18 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) ~ (3^2/2)*n. (End)

A141430 a(n) = A000111(n) mod 9.

Original entry on oeis.org

1, 1, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7
Offset: 0

Views

Author

Paul Curtz, Aug 06 2008

Keywords

Comments

After the initial 1,1, the sequence is periodic with period 12.
This sequence's periodic part is a shuffled version of the two period-6 sequences A070366 and A010697. The sequence contains only the digits 1, 2, 4, 5, 7 and 8 (those of A141425).

Crossrefs

Programs

  • Python
    def A141430(n): return (2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2)[n%12] if n>1 else 1 # Chai Wah Wu, Apr 17 2023

Formula

a(n) = A000111(n) mod 9 = A004099(n) mod 9.
a(n+12) = a(n), n > 1.
a(n) + a(n+6) = 9, n > 1.
a(n+11-p) - a(n+p) = 6 (p=0 or 5), 0 (p=1 or 4), -3 (p=2 or 3), any n > 1.
G.f.: (6x^8-5x^7+x^6+2x^5+3x^4+x^3+1) / ((1-x)(x^2+1)(x^4-x^2+1)). - R. J. Mathar, Dec 05 2008
a(n) = 9/2 +(-1)^floor(n/2)*A010686(n)/2 - 3*A014021(n), n > 1. - R. J. Mathar, Dec 05 2008
a(n) = 9/2 - (3/2)*cos(Pi*n/6) + (1/2)*3^(1/2)*sin(Pi*n/6) - (1/2)*cos(Pi*n/2) - (5/2)*sin(Pi*n/2) - (3/2)*cos(5*Pi*n/6) - (1/2)*3^(1/2)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008

Extensions

Edited by R. J. Mathar, Dec 05 2008

A021444 Decimal expansion of 1/440.

Original entry on oeis.org

0, 0, 2, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7, 2, 7
Offset: 0

Views

Author

Keywords

Examples

			0.002272727272727272727272727272727272727272727272727...
		

Crossrefs

Cf. A010697.

Programs

  • Mathematica
    First[RealDigits[1/440, 10, 100, -1]] (* or *)
    PadRight[{0, 0, 2}, 100, {7, 2}] (* Paolo Xausa, Aug 14 2025 *)
  • PARI
    1/440. \\ Charles R Greathouse IV, Jul 13 2016
    
  • Scheme
    (define (A021444 n) (cond ((<= n 1) 0) ((= 2 n) n) ((even? n) 7) (else 2))) ;; Antti Karttunen, Sep 14 2017

A176054 Decimal expansion of (7+3*sqrt(7))/7.

Original entry on oeis.org

2, 1, 3, 3, 8, 9, 3, 4, 1, 9, 0, 2, 7, 6, 8, 1, 6, 8, 1, 6, 4, 3, 5, 4, 9, 6, 0, 8, 7, 0, 2, 5, 4, 0, 1, 8, 2, 4, 4, 7, 2, 5, 3, 9, 3, 5, 6, 0, 6, 7, 6, 4, 3, 6, 3, 0, 1, 5, 0, 0, 0, 4, 8, 2, 5, 1, 4, 7, 4, 3, 7, 8, 1, 3, 8, 4, 4, 0, 7, 2, 6, 9, 0, 4, 0, 1, 6, 8, 3, 7, 9, 9, 1, 7, 6, 6, 1, 5, 4, 7, 4, 0, 6, 4, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (7+3*sqrt(7))/7 is A010697.

Examples

			(7+3*sqrt(7))/7 = 2.13389341902768168164...
		

Crossrefs

Cf. A010465 (decimal expansion of sqrt(7)), A010697 (repeat 2, 7).

A176434 Decimal expansion of (7+3*sqrt(7))/2.

Original entry on oeis.org

7, 4, 6, 8, 6, 2, 6, 9, 6, 6, 5, 9, 6, 8, 8, 5, 8, 8, 5, 7, 5, 2, 4, 2, 3, 6, 3, 0, 4, 5, 8, 8, 9, 0, 6, 3, 8, 5, 6, 5, 3, 8, 8, 7, 7, 4, 6, 2, 3, 6, 7, 5, 2, 7, 0, 5, 5, 2, 5, 0, 1, 6, 8, 8, 8, 0, 1, 6, 0, 3, 2, 3, 4, 8, 4, 5, 4, 2, 5, 4, 4, 1, 6, 4, 0, 5, 8, 9, 3, 2, 9, 7, 1, 1, 8, 1, 5, 4, 1, 5, 9, 2, 2, 5, 9
Offset: 1

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of (7+3*sqrt(7))/2 is A010697 preceded by 7.

Examples

			(7+3*sqrt(7))/2 = 7.46862696659688588575...
		

Crossrefs

Cf. A010465 (decimal expansion of sqrt(7)), A010697 (repeat 2, 7).
Showing 1-6 of 6 results.