cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A120754 Records in continued fraction expansion of 1/log(2) (cf. A016730).

Original entry on oeis.org

1, 2, 3, 6, 10, 13, 14, 18, 32, 52, 113, 485, 3377, 4714, 963664, 10467647, 14779710, 15407967, 70919074, 73672410, 363144903, 409121736, 628298429, 2803904265, 4054561652, 53155160769
Offset: 1

Views

Author

N. J. A. Sloane, Jun 08 2007

Keywords

Comments

a(n) are also the incrementally largest terms in the continued fraction of log(2) = [a_0; a_1, a_2, ...] = [0; 1, 2, 3, 1, 6, 3, 1, 1, 2] (excluding the a_0 term). - Eric W. Weisstein, Aug 20 2013

Crossrefs

Cf. A016730 (continued fraction of log(2)).
Cf. A120755 (positions of records in the continued fraction of 1/log(2) and log(2)).
Cf. A129935.

Programs

  • Maple
    with(numtheory); read transforms; t1:= cfrac(1/log(2),2000,'quotients'); RECORDS(t1);

Extensions

a(14)-a(22) from Eric W. Weisstein, Aug 20 2013
a(23)-a(26) from Eric W. Weisstein, Aug 21 2013

A120755 Where records occur in continued fraction expansion of 1/log(2) (cf. A016730).

Original entry on oeis.org

1, 2, 3, 5, 15, 28, 41, 47, 74, 109, 123, 166, 501, 6528, 9168, 465506, 3456790, 28568688, 47066208, 146052963, 201331652, 415612810, 1047079803, 1464289355, 2294768489, 2565310827
Offset: 1

Views

Author

N. J. A. Sloane, Jun 08 2007

Keywords

Comments

a(n) are also the positions of incrementally highest terms in the continued fraction of log(2) = [a_0; a_1, a_2, ...] = [0; 1, 2, 3, 1, 6, 3, 1, 1, 2] (excluding the term a_0) - Eric W. Weisstein, Aug 20 2013

Crossrefs

Cf. A016730 (continued fraction of log(2)).
Cf. A120754 (records in the continued fraction expansion of 1/log(2) and log(2)).
Cf. A129935.

Extensions

a(14)-a(22) from Eric W. Weisstein, Aug 20 2013
a(23)-a(26) from Eric W. Weisstein, Aug 21 2013

A002162 Decimal expansion of the natural logarithm of 2.

Original entry on oeis.org

6, 9, 3, 1, 4, 7, 1, 8, 0, 5, 5, 9, 9, 4, 5, 3, 0, 9, 4, 1, 7, 2, 3, 2, 1, 2, 1, 4, 5, 8, 1, 7, 6, 5, 6, 8, 0, 7, 5, 5, 0, 0, 1, 3, 4, 3, 6, 0, 2, 5, 5, 2, 5, 4, 1, 2, 0, 6, 8, 0, 0, 0, 9, 4, 9, 3, 3, 9, 3, 6, 2, 1, 9, 6, 9, 6, 9, 4, 7, 1, 5, 6, 0, 5, 8, 6, 3, 3, 2, 6, 9, 9, 6, 4, 1, 8, 6, 8, 7
Offset: 0

Views

Author

Keywords

Comments

Newton calculated the first 16 terms of this sequence.
Area bounded by y = tan x, y = cot x, y = 0. - Clark Kimberling, Jun 26 2020
Choose four values independently and uniformly at random from the unit interval [0,1]. Sort them, and label them a,b,c,d from least to greatest (so that a b^2+c^2. - Akiva Weinberger, Dec 02 2024
Define the trihyperboloid to be the intersection of the three solid hyperboloids x^2+y^2-z^2<1, x^2-y^2+z^2<1, and -x^2+y^2+z^2<1. This fits perfectly within the cube [-1,1]^3. Then this is the ratio of the volume of the trihyperboloid to its bounding cube. - Akiva Weinberger, Dec 02 2024

Examples

			0.693147180559945309417232121458176568075500134360255254120680009493393...
		

References

  • G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004.
  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 227.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 250.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Sections 1.3.3, 2.21, 6.2, and 7.2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 25 and appendix A, equations 25:14:3 and A:7:3 at pages 232, 670.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.

Crossrefs

Cf. A016730 (continued fraction), A002939, A008288, A142979, A142992.

Programs

  • Mathematica
    RealDigits[N[Log[2],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
    RealDigits[Log[2],10,120][[1]] (* Harvey P. Dale, Jan 25 2024 *)
  • PARI
    { default(realprecision, 20080); x=10*log(2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b002162.txt", n, " ", d)); } \\ Harry J. Smith, Apr 21 2009

Formula

log(2) = Sum_{k>=1} 1/(k*2^k) = Sum_{j>=1} (-1)^(j+1)/j.
log(2) = Integral_{t=0..1} dt/(1+t).
log(2) = (2/3) * (1 + Sum_{k>=1} 2/((4*k)^3-4*k)) (Ramanujan).
log(2) = 4*Sum_{k>=0} (3-2*sqrt(2))^(2*k+1)/(2*k+1) (Y. Luke). - R. J. Mathar, Jul 13 2006
log(2) = 1 - (1/2)*Sum_{k>=1} 1/(k*(2*k+1)). - Jaume Oliver Lafont, Jan 06 2009, Jan 08 2009
log(2) = 4*Sum_{k>=0} 1/((4*k+1)*(4*k+2)*(4*k+3)). - Jaume Oliver Lafont, Jan 08 2009
log(2) = 7/12 + 24*Sum_{k>=1} 1/(A052787(k+4)*A000079(k)). - R. J. Mathar, Jan 23 2009
From Alexander R. Povolotsky, Jul 04 2009: (Start)
log(2) = (1/4)*(3 - Sum_{n>=1} 1/(n*(n+1)*(2*n+1))).
log(2) = (230166911/9240 - Sum_{k>=1} (1/2)^k*(11/k + 10/(k+1) + 9/(k+2) + 8/(k+3) + 7/(k+4) + 6/(k+5) - 6/(k+7) - 7/(k+8) - 8/(k+9) - 9/(k+10) - 10/(k+11)))/35917. (End)
log(2) = A052882/A000670. - Mats Granvik, Aug 10 2009
From log(1-x-x^2) at x=1/2, log(2) = (1/2)*Sum_{k>=1} L(k)/(k*2^k), where L(n) is the n-th Lucas number (A000032). - Jaume Oliver Lafont, Oct 24 2009
log(2) = Sum_{k>=1} 1/(cos(k*Pi/3)*k*2^k) (cf. A176900). - Jaume Oliver Lafont, Apr 29 2010
log(2) = (Sum_{n>=1} 1/(n^2*(n+1)^2*(2*n+1)) + 11)/16. - Alexander R. Povolotsky, Jan 13 2011
log(2) = ((Sum_{n>=1} (2*n+1)/(Sum_{k=1..n} k^2)^2)+396)/576. - Alexander R. Povolotsky, Jan 14 2011
From Alexander R. Povolotsky, Dec 16 2008: (Start)
log(2) = 105*(319/44100 - Sum_{n>=1} 1/(2*n*(2*n+1)*(2*n+3)*(2*n+5)*(2*n+7))).
log(2) = 319/420 - (3/2)*Sum_{n>=1} 1/(6*n^2+39*n+63). (End)
log(2) = Sum_{k>=1} A191907(2,k)/k. - Mats Granvik, Jun 19 2011
log(2) = Integral_{x=0..oo} 1/(1 + e^x) dx. - Jean-François Alcover, Mar 21 2013
log(2) = lim_{s->1} zeta(s)*(1-1/2^(s-1)). - Mats Granvik, Jun 18 2013
From Peter Bala, Dec 10 2013: (Start)
log(2) = 2*Sum_{n>=1} 1/( n*A008288(n-1,n-1)*A008288(n,n) ), a result due to Burnside.
log(2) = (1/3)*Sum_{n >= 0} (5*n+4)/( (3*n+1)*(3*n+2)*C(3*n,n) )*(1/2)^n = (1/12)*Sum_{n >= 0} (28*n+17)/( (3*n+1)*(3*n+2)*C(3*n,n) )*(-1/4)^n.
log(2) = (3/16)*Sum_{n >= 0} (14*n+11)/( (4*n+1)*(4*n+3)*C(4*n,2*n) )*(1/4)^n = (1/12)*Sum_{n >= 0} (34*n+25)/( (4*n+1)*(4*n+3)*C(4*n,2*n) )*(-1/18)^n. For more series of this type see the Bala link.
See A142979 for series acceleration formulas for log(2) obtained from the Mercator series log(2) = Sum_{n >= 1} (-1)^(n+1)/n. See A142992 for series for log(2) related to the root lattice C_n. (End)
log(2) = lim_{n->oo} Sum_{k=2^n..2^(n+1)-1} 1/k. - Richard R. Forberg, Aug 16 2014
From Peter Bala, Feb 03 2015: (Start)
log(2) = (2/3)*Sum_{k >= 0} 1/((2*k + 1)*9^k).
Define a pair of integer sequences A(n) = 9^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} 1/((2*k + 1)*9^k). Both satisfy the same second-order recurrence equation u(n) = (40*n + 16)*u(n-1) - 36*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion log(2) = (2/3)*(1 + 2/(54 - 36*3^2/(96 - 36*5^2/(136 - ... - 36*(2*n - 1)^2/((40*n + 16) - ... ))))). Cf. A002391, A073000 and A105531 for similar expansions. (End)
log(2) = Sum_{n>=1} (Zeta(2*n)-1)/n. - Vaclav Kotesovec, Dec 11 2015
From Peter Bala, Oct 30 2016: (Start)
Asymptotic expansions:
for N even, log(2) - Sum_{k = 1..N/2} (-1)^(k-1)/k ~ (-1)^(N/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1. See Borwein et al., Theorem 1 (b);
for N odd, log(2) - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/k ~ (-1)^((N-1)/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), by Borwein et al., Lemma 2 with f(x) := 1/(x + 1/2), h := 1/2 and then set x = (N - 1)/2, where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. (End)
log(2) = lim_{n->oo} Sum_{k=1..n} sin(1/(n+k)). See Mathematical Reflections link. - Michel Marcus, Jan 07 2017
log(2) = Sum_{n>=1} A006519(n) / ((1 + 2^A006519(n)) * A000265(n) * (1 + A000265(n))). - Nicolas Nagel, Mar 19 2018
From Amiram Eldar, Jul 02 2020: (Start)
Equals Sum_{k>=2} zeta(k)/2^k.
Equals -Sum_{k>=2} log(1 - 1/k^2).
Equals Sum_{k>=1} 1/A002939(k).
Equals Integral_{x=0..Pi/3} tan(x) dx. (End)
log(2) = Integral_{x=0..Pi/2} (sec(x) - tan(x)) dx. - Clark Kimberling, Jul 08 2020
From Peter Bala, Nov 14 2020: (Start)
log(2) = Integral_{x = 0..1} (x - 1)/log(x) dx (Boros and Moll, p. 97).
log(2) = (1/2)*Integral_{x = 0..1} (x + 2)*(x - 1)^2/log(x)^2 dx.
log(2) = (1/4)*Integral_{x = 0..1} (x^2 + 3*x + 4)*(x - 1)^3/log(x)^3 dx. (End)
log(2) = 2*arcsinh(sqrt(2)/4) = 2*sqrt(2)*Sum_{n >= 0} (-1)^n*C(2*n,n)/ ((8*n+4)*32^n) = 3*Sum_{n >= 0} (-1)^n/((8*n+4)*(2^n)*C(2*n,n)). - Peter Bala, Jan 14 2022
log(2) = Integral_{x=0..oo} ( e^(-x) * (1-e^(-2x)) * (1-e^(-4x)) * (1-e^(-6x)) ) / ( x * (1-e^(-14x)) ) dx (see Crux Mathematicorum link). - Bernard Schott, Jul 11 2022
From Peter Bala, Oct 22 2023: (Start)
log(2) = 23/32 + 2!^3/16 * Sum_{n >= 1} (-1)^n * (n + 1)/(n*(n + 1)*(n + 2))^2 = 707/1024 - 4!^3/(16^2 * 2!^2) * Sum_{n >= 1} (-1)^n * (n + 2)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4))^2 = 42611/61440 + 6!^3/(16^3 * 3!^2) * Sum_{n >= 1} (-1)^n * (n + 3)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6))^2.
More generally, it appears that for k >= 0, log(2) = c(k) + (2*k)!^3/(16^k * k!^2) * Sum_{n >= 1} (-1)^(n+k+1) * (n + k)/(n*(n + 1)*...*(n + 2*k))^2 , where c(k) is a rational approximation to log(2). The first few values of c(k) are [0, 23/32, 707/1024, 42611/61440, 38154331/55050240, 76317139/110100480, 26863086823/38755368960, ...].
Let P(n,k) = n*(n + 1)*...*(n + k).
Conjecture: for k >= 0 and r even with r - 1 <= k, the series Sum_{n >= 1} (-1)^n * (d/dn)^r (P(n,k)) / (P(n,k)^2 = A(r,k)*log(2) + B(r,k), where A(r,k) and B(r,k) are both rational numbers. (End)
From Peter Bala, Nov 13 2023: (Start)
log(2) = 5/8 + (1/8)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)^2 / ( k*(k + 1) )^4
= 257/384 + (3!^5/2^9)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)*(2*k + 3)^2*(2*k + 5) / ( k*(k + 1)*(k + 2)*(k + 3) )^4
= 267515/393216 + (5!^5/2^19)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)*(2*k + 3)*(2*k + 5)^2*(2*k + 7)*(2*k + 9) / ( k*(k + 1)*(k + 2)*(k + 3)*(k + 4)*(k + 5) )^4
log(2) = 3/4 - 1/128 * Sum_{k >= 0} (-1/16)^k * (10*k + 12)*binomial(2*k+2,k+1)/ ((k + 1)*(2*k + 3)). The terms of the series are O(1/(k^(3/2)*4^n)). (End)
log(2) = eta(1) is a period, where eta(x) is the Dirichlet eta function. - Andrea Pinos, Mar 19 2024
log(2) = K_{n>=0} (n^2 + [n=0])/1, where K is the Gauss notation for an infinite continued fraction. In the expanded form, log(2) = 1/(1 + 1/(1 + 4/(1 + 9/1 + 16/(1 + 25/(1 + ... (see Clawson at p. 227). - Stefano Spezia, Jul 01 2024
log(2) = lim_{n->oo} Sum_{k=1..n} 1/(n + k) = lim_{x->0} (2^x - 1)/x = lim_{x->0} (2^x - 2^(-x))/(2*x) (see Finch). - Stefano Spezia, Oct 19 2024
From Colin Linzer, Nov 08 2024: (Start)
log(2) = Integral_{t=0...oo} (1 - tanh(t)) dt.
log(2) = Integral_{t=0...1} arctanh(t) dt.
log(2) = (1/2) * Integral_{t=-1...1} |arctanh(t)| dt. (End)
log(2) = 1 + Sum_{n >= 1} (-1)^n/(n*(4*n^2 - 1)) = 1/2 + (1/2)*Sum_{n >= 1} 1/(n*(4*n^2 - 1)). - Peter Bala, Jan 07 2025
log(2) = Integral_{x=0..1} Integral_{y=0..1} 1/((1 - x*y)*(1 + x)*(1 + y)) dy dx. - Kritsada Moomuang, May 22 2025

A067882 Factorial expansion of log(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

0, 1, 1, 0, 3, 1, 0, 3, 6, 2, 5, 4, 6, 11, 4, 11, 5, 12, 3, 5, 13, 2, 22, 6, 22, 13, 20, 7, 1, 0, 1, 20, 2, 6, 4, 1, 18, 14, 35, 2, 11, 31, 16, 19, 42, 36, 41, 0, 14, 31, 25, 43, 4, 13, 34, 53, 50, 57, 2, 30, 12, 25, 45, 24, 2, 39, 57, 51, 30, 41, 65, 15, 9, 55, 23, 4, 35, 18, 77, 43
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			log(2) = 0 + 1/2! + 1/3! + 0/4! + 3/5! + 1/6! + 0/7! + 3/8! + 6/9! + ...
		

Crossrefs

Cf. A002162 (decimal expansion), A016730 (continued fraction).
Cf. A322334 (log(3)), A322333 (log(5)), A068460 (log(7)), A068461 (log(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(250)); [Floor(Log(2))] cat [Floor(Factorial(n)*Log(2)) - n*Floor(Factorial((n-1))*Log(2)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Mathematica
    With[{b = Log[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    default(realprecision, 250); b = log(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A067882(n):
        if (n==1): return floor(log(2))
        else: return expand(floor(factorial(n)*log(2)) - n*floor(factorial(n-1)*log(2)))
    [A067882(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = floor(n!*log(2)) - n*floor((n-1)!*log(2)).

A129935 Numbers n such that ceiling( 2/(2^(1/n)-1) ) is not equal to floor( 2n/log(2) ).

Original entry on oeis.org

777451915729368, 140894092055857794, 1526223088619171207, 3052446177238342414, 54545811706258836911039145, 624965662836733496131286135873807507, 1667672249427111806462471627630318921648499, 36465374036664559522628534720215805439659141
Offset: 1

Views

Author

Richard Stanley, Apr 30 2007 (who sent a(1))

Keywords

Comments

If n belongs to this sequence and m = ceiling(2/(2^(1/n)-1)), then 0 < m/(2n) - 1/log(2) < (log(2)/3) * (1/(2n)^2) implying that m/(2n) is a convergent of 1/log(2) (note that m and 2n are not necessarily coprime). - Max Alekseyev, Jun 06 2007
From David Applegate, Jun 07 2007: (Start)
"Some background to Max Alekseyev's comments: The key point is that the Laurent series for 2/(2^(1/n)-1) about n=infinity is 2/log(2)*n - 1 + (1/6)*log(2)/n + O(1/n^3).
"Also, since 2/log(2) is irrational, 2n/log(2) is never integral, so floor(2n/log(2)) = ceiling(2n/log(2)-1).
"So the question becomes: when is 2n/log(2)-1 so close to an integer that 2/(2^(1/n)-1) is on the other side of the integer? That is why the continued fraction expansion of 2/log(2) is relevant." (End)
The appropriate generalization of ceiling(2/(2^(1/n)-1)) = ? floor(2n/log(2)) is floor(a/(b^(1/n)-1)+a/2) = ceiling(an/log(b)). When a=2, the a/2 can be hidden in floor() + 1 = ceiling(). - David Applegate, Jun 08 2007 [edited Jun 11 2007]

References

  • S. W. Golomb and A. W. Hales, "Hypercube Tic-Tac-Toe", in "More Games of No Chance", ed. R. J. Nowakowski, MSRI Publications 42, Cambridge University Press, 2002, pp. 167-182. Here it is stated that the first counterexample is at n=6847196937, an error due to faulty multiprecision arithmetic. The correct value was found by J. Buhler in 2004 and is reported in S. Golomb, "Martin Gardner and Tictacktoe," in Demaine, Demaine, and Rodgers, eds., A Lifetime of Puzzles, A K Peters, 2008, pp. 293-301.
  • Dean Hickerson, Email to Jon Perry and N. J. A. Sloane, Dec 16 2002. Gives first three terms: 777451915729368, 140894092055857794, 1526223088619171207, as well as five later terms. - N. J. A. Sloane, Apr 30 2014

Crossrefs

Cf. A078608 for the sequence ceiling( 2/(2^(1/n)-1) ).

Programs

  • Mathematica
    (* Mma 9.0.1 code from Bill Gosper, Mar 15 2013. He comments: "This reproduces the hundred values in the b-file, and probably works up to around half a billion digits. When Mathematica gets fixed, change 999999999 to infinity." *)
    $MaxExtraPrecision = 999999999; For[{lo = {0, 1}, hi = {1, 0}, nu = {0, 0}, n = 0}, nu[[2]] < 10^386, nu = lo + hi; For[{k = nu[[2]]}, Floor[k*2/Log[2]] != Ceiling[2/(2^(1/k) - 1)], k += nu[[2]], Print[{++n, k}]];
      If[nu[[1]]*Log[2] > 2*nu[[2]], hi = nu, lo = nu]]
  • PARI
    prec=1500;default(realprecision,prec);c=contfrac(log(2)/2);default(realprecision,prec*2+50); i=0;for(n=2,#c-1, cand=contfracpnqn(vecextract(c,2^n-1))[1,1];forstep(m=cand,c[n+1]*cand,cand, if(ceil(2/(2^(1/m)-1)) != floor(2*m/log(2)), i++;print(i" "m), break))) /* Phil Carmody, Mar 20 2013 */

Extensions

More terms from Max Alekseyev, Jun 06 2007
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A317557 Number of binary digits to which the n-th convergent of the continued fraction expansion of log(2) matches the correct value.

Original entry on oeis.org

0, -1, 3, 6, 9, 13, 14, 17, 19, 20, 23, 20, 25, 20, 33, 37, 35, 38, 41, 43, 45, 43, 47, 48, 52, 54, 58, 61, 68, 70, 74, 77, 78, 81, 86, 89, 92, 93, 92, 99, 105, 109, 113, 116, 118, 121, 127, 133, 136, 135, 139, 141, 145, 149, 154, 159, 161, 165, 171, 173, 172, 180
Offset: 1

Views

Author

A.H.M. Smeets, Jul 31 2018

Keywords

Comments

Binary expansion of log(2) in A068426.
For number of correct decimal digits see A317558.
For the similar case of number of correct binary digits of Pi see A305879.
The denominator of the k-th convergent obtained from a continued fraction satisfying the Gauss-Kuzmin distribution will tend to exp(k*A100199), A100199 being the inverse of Lévy's constant; the error between the k-th convergent and the constant itself tends to exp(-2*k*A100199), or in binary digits 2*k*A100199/log(2) bits after the binary point.
The sequence for quaternary digits is obtained by floor(a(n)/2), the sequence for octal digits is obtained by floor(a(n)/3), and the sequence for hexadecimal digits is obtained by floor(a(n)/4).

Examples

			   n   convergent         binary expansion         a(n)
  ==  ============  =============================  ====
   1     0 / 1      0.0                              0
   2     1 / 1      1.0                             -1
   3     2 / 3      0.1010...                        3
   4     7 / 10     0.1011001...                     6
   5     9 / 13     0.1011000100...                  9
   6    61 / 88     0.10110001011101...             13
   7   192 / 277    0.101100010111000...            14
   8   253 / 365    0.101100010111001001...         17
   9   445 / 642    0.10110001011100100000...       19
  10  1143 / 1649   0.101100010111001000011...      20
  oo  lim = log(2)  0.101100010111001000010111...   --
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = 1, a = RealDigits[ Log@2, 2, 4 + 10][[1]], b = RealDigits[ FromContinuedFraction@ ContinuedFraction[Log@2, n + 1], 2, 4n + 10][[1]]}, While[ a[[k]] == b[[k]], k++]; k - 1]; a[1] = 0; a[2] = -1; Array[a, 61] (* Robert G. Wilson v, Aug 09 2018 *)

Formula

Lim_{n -> oo} a(n)/n = 2*log(A086702)/log(2) = 2*A100199/log(2) = 2*A305607.

Extensions

a(40) onward from Robert G. Wilson v, Aug 09 2018

A317558 Number of decimal digits to which the n-th convergent of the continued fraction expansion of log(2) matches the correct value.

Original entry on oeis.org

0, -1, 1, 0, 2, 4, 5, 4, 5, 6, 6, 6, 7, 8, 9, 10, 11, 10, 12, 13, 13, 13, 14, 15, 15, 16, 17, 18, 20, 22, 22, 23, 23, 24, 25, 26, 27, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 40, 39, 41, 39, 43, 44, 45, 46, 48, 48, 49, 51, 52, 52, 54, 54, 55, 55, 56, 57, 57, 58
Offset: 1

Views

Author

A.H.M. Smeets, Jul 31 2018

Keywords

Comments

Decimal expansion of log(2) in A002162.
For the number of correct binary digits see A317557.
For the similar case of number of correct decimal digits of Pi see A084407.

Examples

			   n   convergent    decimal expansion    a(n)
  ==  ============  ====================  ====
   1     0 / 1      0.0                     0
   2     1 / 1      1.0                    -1
   3     2 / 3      0.66...                 1
   4     7 / 10     0.7...                  0
   5     9 / 13     0.692...                2
   6    61 / 88     0.69318...              4
   7   192 / 277    0.693140...             5
   8   253 / 365    0.69315...              4
   9   445 / 642    0.693146...             5
  10  1143 / 1649   0.6931473...            6
  oo  lim = log(2)  0.693147180559945...   --
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = 1, a = RealDigits[Log@2, 10, n + 10][[1]], b = RealDigits[ FromContinuedFraction@ ContinuedFraction[ Log@2, n], 10, n + 10][[1]]}, While[a[[k]] == b[[k]], k++]; k - 1]; a[1] = 0; a[2] = -1; Array[a, 69] (* Robert G. Wilson v, Aug 09 2018 *)

Formula

Lim_{n -> oo} a(n)/n = 2*log(A086702)/log(10) = 2*A100199/log(10) = 2*A240995.

Extensions

a(61) onward from Robert G. Wilson v, Aug 09 2018

A228269 First position of n in the continued fraction of log(2).

Original entry on oeis.org

1, 2, 3, 30, 40, 5, 29, 89, 88, 15, 187, 125, 28, 41, 364, 394, 70, 47, 105, 378, 483, 2096, 520, 1239, 390, 1207, 299, 117, 687, 295, 179, 74, 1842, 1531, 1546, 1302, 1720, 1544, 119, 916, 880, 2081, 110, 614, 865, 310, 951, 2094, 1292, 1064, 6139
Offset: 1

Views

Author

Eric W. Weisstein, Aug 19 2013

Keywords

Comments

Smallest positive integers not appearing in the first 9702699208 terms of the c.f. are 42112, 42387, 43072, 45089, ... - Eric W. Weisstein, Aug 21 2013

Crossrefs

Cf. A016730 (continued fraction of log(2)).

A076592 First occurrence of n as a term in the continued fraction for log(2).

Original entry on oeis.org

2, 3, 4, 31, 41, 6, 30, 90, 89, 16, 188, 126, 29, 42, 365, 395, 71, 48, 106, 379, 484, 2097, 521, 1240, 391, 1208, 300, 118, 688, 296, 180, 75, 1843, 1532, 1547, 1303, 1721, 1545, 120, 917, 881, 2082, 111, 615, 866, 311, 952, 2095, 1293, 1065, 6140
Offset: 1

Views

Author

Benoit Cloitre, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=6200,cfl2},cfl2=ContinuedFraction[Log[2],nn];Table[Position[cfl2,n,1,1],{n,60}]]//Flatten (* Harvey P. Dale, Mar 09 2023 *)
  • PARI
    default(realprecision, 1500); v=contfrac(log(2)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)

A113160 Table read by antidiagonals of continued fractions for log(n).

Original entry on oeis.org

0, 1, 1, 2, 10, 1, 3, 7, 2, 1, 1, 9, 1, 1, 1, 6, 2, 1, 1, 1, 1, 3, 2, 2, 1, 3, 1, 2, 1, 1, 3, 1, 1, 17, 12, 2, 1, 3, 7, 3, 4, 2, 1, 5, 2, 2, 1, 6, 1, 18, 19, 1, 14, 3, 2, 1, 32, 4, 1, 2, 1, 2, 4, 3, 2, 2, 1, 2, 1, 1, 330, 11, 2, 1, 3, 1, 2, 2, 1, 17, 1, 3, 3, 2, 1, 2, 1, 1, 16, 1, 2, 1, 1, 21, 4, 1, 1, 8, 2
Offset: 2

Views

Author

Keywords

Examples

			The table starts:
0,1,2,3,1,6,...
1,10,7,9,2,2,...
1,2,1,1,2,3,...
		

Crossrefs

Rows A016730 to A016740, A016441 to A016528; columns A000195, A057603.
Showing 1-10 of 10 results.