cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 263 results. Next

A002378 Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0

Views

Author

Keywords

Comments

4*a(n) + 1 are the odd squares A016754(n).
The word "pronic" (used by Dickson) is incorrect. - Michael Somos
According to the 2nd edition of Webster, the correct word is "promic". - R. K. Guy
a(n) is the number of minimal vectors in the root lattice A_n (see Conway and Sloane, p. 109).
Let M_n denote the n X n matrix M_n(i, j) = (i + j); then the characteristic polynomial of M_n is x^(n-2) * (x^2 - a(n)*x - A002415(n)). - Benoit Cloitre, Nov 09 2002
The greatest LCM of all pairs (j, k) for j < k <= n for n > 1. - Robert G. Wilson v, Jun 19 2004
First differences are a(n+1) - a(n) = 2*n + 2 = 2, 4, 6, ... (while first differences of the squares are (n+1)^2 - n^2 = 2*n + 1 = 1, 3, 5, ...). - Alexandre Wajnberg, Dec 29 2005
25 appended to these numbers corresponds to squares of numbers ending in 5 (i.e., to squares of A017329). - Lekraj Beedassy, Mar 24 2006
A rapid (mental) multiplication/factorization technique -- a generalization of Lekraj Beedassy's comment: For all bases b >= 2 and positive integers n, c, d, k with c + d = b^k, we have (n*b^k + c)*(n*b^k + d) = a(n)*b^(2*k) + c*d. Thus the last 2*k base-b digits of the product are exactly those of c*d -- including leading 0(s) as necessary -- with the preceding base-b digit(s) the same as a(n)'s. Examples: In decimal, 113*117 = 13221 (as n = 11, b = 10 = 3 + 7, k = 1, 3*7 = 21, and a(11) = 132); in octal, 61*67 = 5207 (52 is a(6) in octal). In particular, for even b = 2*m (m > 0) and c = d = m, such a product is a square of this type. Decimal factoring: 5609 is immediately seen to be 71*79. Likewise, 120099 = 301*399 (k = 2 here) and 99990000001996 = 9999002*9999998 (k = 3). - Rick L. Shepherd, Jul 24 2021
Number of circular binary words of length n + 1 having exactly one occurrence of 01. Example: a(2) = 6 because we have 001, 010, 011, 100, 101 and 110. Column 1 of A119462. - Emeric Deutsch, May 21 2006
The sequence of iterated square roots sqrt(N + sqrt(N + ...)) has for N = 1, 2, ... the limit (1 + sqrt(1 + 4*N))/2. For N = a(n) this limit is n + 1, n = 1, 2, .... For all other numbers N, N >= 1, this limit is not a natural number. Examples: n = 1, a(1) = 2: sqrt(2 + sqrt(2 + ...)) = 1 + 1 = 2; n = 2, a(2) = 6: sqrt(6 + sqrt(6 + ...)) = 1 + 2 = 3. - Wolfdieter Lang, May 05 2006
Nonsquare integers m divisible by ceiling(sqrt(m)), except for m = 0. - Max Alekseyev, Nov 27 2006
The number of off-diagonal elements of an (n + 1) X (n + 1) matrix. - Artur Jasinski, Jan 11 2007
a(n) is equal to the number of functions f:{1, 2} -> {1, 2, ..., n + 1} such that for a fixed x in {1, 2} and a fixed y in {1, 2, ..., n + 1} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Numbers m >= 0 such that round(sqrt(m+1)) - round(sqrt(m)) = 1. - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that ceiling(2*sqrt(m+1)) - 1 = 1 + floor(2*sqrt(m)). - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that fract(sqrt(m+1)) > 1/2 and fract(sqrt(m)) < 1/2 where fract(x) is the fractional part (fract(x) = x - floor(x), x >= 0). - Hieronymus Fischer, Aug 06 2007
X values of solutions to the equation 4*X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Nonvanishing diagonal of A132792, the infinitesimal Lah matrix, so "generalized factorials" composed of a(n) are given by the elements of the Lah matrix, unsigned A111596, e.g., a(1)*a(2)*a(3) / 3! = -A111596(4,1) = 24. - Tom Copeland, Nov 20 2007
If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is the number of 2-subsets and 3-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) coincides with the vertex of a parabola of even width in the Redheffer matrix, directed toward zero. An integer p is prime if and only if for all integer k, the parabola y = kx - x^2 has no integer solution with 1 < x < k when y = p; a(n) corresponds to odd k. - Reikku Kulon, Nov 30 2008
The third differences of certain values of the hypergeometric function 3F2 lead to the squares of the oblong numbers i.e., 3F2([1, n + 1, n + 1], [n + 2, n + 2], z = 1) - 3*3F2([1, n + 2, n + 2], [n + 3, n + 3], z = 1) + 3*3F2([1, n + 3, n + 3], [n + 4, n + 4], z = 1) - 3F2([1, n + 4, n + 4], [n + 5, n + 5], z = 1) = (1/((n+2)*(n+3)))^2 for n = -1, 0, 1, 2, ... . See also A162990. - Johannes W. Meijer, Jul 21 2009
Generalized factorials, [a.(n!)] = a(n)*a(n-1)*...*a(0) = A010790(n), with a(0) = 1 are related to A001263. - Tom Copeland, Sep 21 2011
For n > 1, a(n) is the number of functions f:{1, 2} -> {1, ..., n + 2} where f(1) > 1 and f(2) > 2. Note that there are n + 1 possible values for f(1) and n possible values for f(2). For example, a(3) = 12 since there are 12 functions f from {1, 2} to {1, 2, 3, 4, 5} with f(1) > 1 and f(2) > 2. - Dennis P. Walsh, Dec 24 2011
a(n) gives the number of (n + 1) X (n + 1) symmetric (0, 1)-matrices containing two ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of positions of a domino in a rectangled triangular board with both legs equal to n + 1. - César Eliud Lozada, Sep 26 2012
a(n) is the number of ordered pairs (x, y) in [n+2] X [n+2] with |x-y| > 1. - Dennis P. Walsh, Nov 27 2012
a(n) is the number of injective functions from {1, 2} into {1, 2, ..., n + 1}. - Dennis P. Walsh, Nov 27 2012
a(n) is the sum of the positive differences of the partition parts of 2n + 2 into exactly two parts (see example). - Wesley Ivan Hurt, Jun 02 2013
a(n)/a(n-1) is asymptotic to e^(2/n). - Richard R. Forberg, Jun 22 2013
Number of positive roots in the root system of type D_{n + 1} (for n > 2). - Tom Edgar, Nov 05 2013
Number of roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
From Felix P. Muga II, Mar 18 2014: (Start)
a(m), for m >= 1, are the only positive integer values t for which the Binet-de Moivre formula for the recurrence b(n) = b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root of a square. PROOF (as suggested by Wolfdieter Lang, Mar 26 2014): The sqrt(1 + 4t) appearing in the zeros r1 and r2 of the characteristic equation is (a positive) integer for positive integer t precisely if 4t + 1 = (2m + 1)^2, that is t = a(m), m >= 1. Thus, the characteristic roots are integers: r1 = m + 1 and r2 = -m.
Let m > 1 be an integer. If b(n) = b(n-1) + a(m)*b(n-2), n >= 2, b(0) = 0, b(1) = 1, then lim_{n->oo} b(n+1)/b(n) = m + 1. (End)
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graphs (here simply K_2). - Tom Copeland, Apr 05 2014
The set of integers k for which k + sqrt(k + sqrt(k + sqrt(k + sqrt(k + ...) ... is an integer. - Leslie Koller, Apr 11 2014
a(n-1) is the largest number k such that (n*k)/(n+k) is an integer. - Derek Orr, May 22 2014
Number of ways to place a domino and a singleton on a strip of length n - 2. - Ralf Stephan, Jun 09 2014
With offset 1, this appears to give the maximal number of crossings between n nonconcentric circles of equal radius. - Felix Fröhlich, Jul 14 2014
For n > 1, the harmonic mean of the n values a(1) to a(n) is n + 1. The lowest infinite sequence of increasing positive integers whose cumulative harmonic mean is integral. - Ian Duff, Feb 01 2015
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an (n+2) X (n+2) chessboard. The lone queen can be placed in any position on the perimeter of the board. - Bob Selcoe, Feb 07 2015
With a(0) = 1, a(n-1) is the smallest positive number not in the sequence such that Sum_{i = 1..n} 1/a(i-1) has a denominator equal to n. - Derek Orr, Jun 17 2015
The positive members of this sequence are a proper subsequence of the so-called 1-happy couple products A007969. See the W. Lang link there, eq. (4), with Y_0 = 1, with a table at the end. - Wolfdieter Lang, Sep 19 2015
For n > 0, a(n) is the reciprocal of the area bounded above by y = x^(n-1) and below by y = x^n for x in the interval [0, 1]. Summing all such areas visually demonstrates the formula below giving Sum_{n >= 1} 1/a(n) = 1. - Rick L. Shepherd, Oct 26 2015
It appears that, except for a(0) = 0, this is the set of positive integers n such that x*floor(x) = n has no solution. (For example, to get 3, take x = -3/2.) - Melvin Peralta, Apr 14 2016
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that n - 1 <= x/y < n is given by 1/a(n). - Andres Cicuttin, Dec 03 2016
a(n) is equal to the sum of all possible differences between n different pairs of consecutive odd numbers (see example). - Miquel Cerda, Dec 04 2016
a(n+1) is the dimension of the space of vector fields in the plane with polynomial coefficients up to order n. - Martin Licht, Dec 04 2016
It appears that a(n) + 3 is the area of the largest possible pond in a square (A268311). - Craig Knecht, May 04 2017
Also the number of 3-cycles in the (n+3)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Also the Wiener index of the (n+2)-wheel graph. - Eric W. Weisstein, Sep 08 2017
The left edge of a Floyd's triangle that consists of even numbers: 0; 2, 4; 6, 8, 10; 12, 14, 16, 18; 20, 22, 24, 26, 28; ... giving 0, 2, 6, 12, 20, ... The right edge generates A028552. - Waldemar Puszkarz, Feb 02 2018
a(n+1) is the order of rowmotion on a poset obtained by adjoining a unique minimal (or maximal) element to a disjoint union of at least two chains of n elements. - Nick Mayers, Jun 01 2018
From Juhani Heino, Feb 05 2019: (Start)
For n > 0, 1/a(n) = n/(n+1) - (n-1)/n.
For example, 1/6 = 2/3 - 1/2; 1/12 = 3/4 - 2/3.
Corollary of this:
Take 1/2 pill.
Next day, take 1/6 pill. 1/2 + 1/6 = 2/3, so your daily average is 1/3.
Next day, take 1/12 pill. 2/3 + 1/12 = 3/4, so your daily average is 1/4.
And so on. (End)
From Bernard Schott, May 22 2020: (Start)
For an oblong number m >= 6 there exists a Euclidean division m = d*q + r with q < r < d which are in geometric progression, in this order, with a common integer ratio b. For b >= 2 and q >= 1, the Euclidean division is m = qb*(qb+1) = qb^2 * q + qb where (q, qb, qb^2) are in geometric progression.
Some examples with distinct ratios and quotients:
6 | 4 30 | 25 42 | 18
----- ----- -----
2 | 1 , 5 | 1 , 6 | 2 ,
and also:
42 | 12 420 | 100
----- -----
6 | 3 , 20 | 4 .
Some oblong numbers also satisfy a Euclidean division m = d*q + r with q < r < d that are in geometric progression in this order but with a common noninteger ratio b > 1 (see A335064). (End)
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {2, 2n}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 09 2022
a(n-2) is the maximum irregularity over all trees with n vertices. The extremal graphs are stars. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
For n > 0, number of diagonals in a regular 2*(n+1)-gon that are not parallel to any edge (cf. A367204). - Paolo Xausa, Mar 30 2024
a(n-1) is the maximum Zagreb index over all trees with n vertices. The extremal graphs are stars. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024
For n >= 1, a(n) is the determinant of the distance matrix of a cycle graph on 2*n + 1 vertices (if the length of the cycle is even such a determinant is zero). - Miquel A. Fiol, Aug 20 2024
For n > 1, the continued fraction expansion of sqrt(16*a(n)) is [2n+1; {1, 2n-1, 1, 8n+2}]. - Magus K. Chu, Nov 20 2024
For n>=2, a(n) is the number of faces on a n+1-zone rhombic zonohedron. Each pair of a collection of great circles on a sphere intersects at two points, so there are 2*binomial(n+1,2) intersections. The dual of the implied polyhedron is a rhombic zonohedron, its faces corresponding to the intersections. - Shel Kaphan, Aug 12 2025

Examples

			a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
		

References

  • W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
  • J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
  • H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
  • Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.

Crossrefs

Partial sums of A005843 (even numbers). Twice triangular numbers (A000217).
1/beta(n, 2) in A061928.
A036689 and A036690 are subsequences. Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. - Bruno Berselli, Jun 10 2013
Row n=2 of A185651.
Cf. A007745, A169810, A213541, A005369 (characteristic function).
Cf. A281026. - Bruno Berselli, Jan 16 2017
Cf. A045943 (4-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
A335064 is a subsequence.
Second column of A003506.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Cf. A347213 (Dgf at s=4).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

Formula

G.f.: 2*x/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = a(n-1) + 2*n, a(0) = 0.
Sum_{n >= 1} a(n) = n*(n+1)*(n+2)/3 (cf. A007290, partial sums).
Sum_{n >= 1} 1/a(n) = 1. (Cf. Tijdeman)
Sum_{n >= 1} (-1)^(n+1)/a(n) = log(4) - 1 = A016627 - 1 [Jolley eq (235)].
1 = 1/2 + Sum_{n >= 1} 1/(2*a(n)) = 1/2 + 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + ... with partial sums: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, ... - Gary W. Adamson, Jun 16 2003
a(n)*a(n+1) = a(n*(n+2)); e.g., a(3)*a(4) = 12*20 = 240 = a(3*5). - Charlie Marion, Dec 29 2003
Sum_{k = 1..n} 1/a(k) = n/(n+1). - Robert G. Wilson v, Feb 04 2005
a(n) = A046092(n)/2. - Zerinvary Lajos, Jan 08 2006
Log 2 = Sum_{n >= 0} 1/a(2n+1) = 1/2 + 1/12 + 1/30 + 1/56 + 1/90 + ... = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ... = Sum_{n >= 0} (-1)^n/(n+1) = A002162. - Gary W. Adamson, Jun 22 2003
a(n) = A110660(2*n). - N. J. A. Sloane, Sep 21 2005
a(n-1) = n^2 - n = A000290(n) - A000027(n) for n >= 1. a(n) is the inverse (frequency distribution) sequence of A000194(n). - Mohammad K. Azarian, Jul 26 2007
(2, 6, 12, 20, 30, ...) = binomial transform of (2, 4, 2). - Gary W. Adamson, Nov 28 2007
a(n) = 2*Sum_{i=0..n} i = 2*A000217(n). - Artur Jasinski, Jan 09 2007, and Omar E. Pol, May 14 2008
a(n) = A006503(n) - A000292(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = A061037(4*n) = (n+1/2)^2 - 1/4 = ((2n+1)^2 - 1)/4 = (A005408(n)^2 - 1)/4. - Paul Curtz, Oct 03 2008 and Klaus Purath, Jan 13 2022
a(0) = 0, a(n) = a(n-1) + 1 + floor(x), where x is the minimal positive solution to fract(sqrt(a(n-1) + 1 + x)) = 1/2. - Hieronymus Fischer, Dec 31 2008
E.g.f.: (x+2)*x*exp(x). - Geoffrey Critzer, Feb 06 2009
Product_{i >= 2} (1-1/a(i)) = -2*sin(Pi*A001622)/Pi = -2*sin(A094886)/A000796 = 2*A146481. - R. J. Mathar, Mar 12 2009, Mar 15 2009
E.g.f.: ((-x+1)*log(-x+1)+x)/x^2 also Integral_{x = 0..1} ((-x+1)*log(-x+1) + x)/x^2 = zeta(2) - 1. - Stephen Crowley, Jul 11 2009
a(A007018(n)) = A007018(n+1), i.e., A007018(n+1) = A007018(n)-th oblong numbers. - Jaroslav Krizek, Sep 13 2009
a(n) = floor((n + 1/2)^2). a(n) = A035608(n) + A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*(2*A006578(n) - A035608(n)). - Reinhard Zumkeller, Feb 07 2010
a(n-1) = floor(n^5/(n^3 + n^2 + 1)). - Gary Detlefs, Feb 11 2010
For n > 1: a(n) = A173333(n+1, n-1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A004202(A000217(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = A188652(2*n+1) + 1. - Reinhard Zumkeller, Apr 13 2011
For n > 0 a(n) = 1/(Integral_{x=0..Pi/2} 2*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A002061(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(0) = 0, a(n) = A005408(A034856(n)) - A005408(n-1). - Ivan N. Ianakiev, Dec 06 2012
a(n) = A005408(A000096(n)) - A005408(n). - Ivan N. Ianakiev, Dec 07 2012
a(n) = A001318(n) + A085787(n). - Omar E. Pol, Jan 11 2013
Sum_{n >= 1} 1/(a(n))^(2s) = Sum_{t = 1..2*s} binomial(4*s - t - 1, 2*s - 1) * ( (1 + (-1)^t)*zeta(t) - 1). See Arxiv:1301.6293. - R. J. Mathar, Feb 03 2013
a(n)^2 + a(n+1)^2 = 2 * a((n+1)^2), for n > 0. - Ivan N. Ianakiev, Apr 08 2013
a(n) = floor(n^2 * e^(1/n)) and a(n-1) = floor(n^2 / e^(1/n)). - Richard R. Forberg, Jun 22 2013
a(n) = 2*C(n+1, 2), for n >= 0. - Felix P. Muga II, Mar 11 2014
A005369(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
Binomial transform of [0, 2, 2, 0, 0, 0, ...]. - Alois P. Heinz, Mar 10 2015
a(2n) = A002943(n) for n >= 0, a(2n-1) = A002939(n) for n >= 1. - M. F. Hasler, Oct 11 2015
For n > 0, a(n) = 1/(Integral_{x=0..1} (x^(n-1) - x^n) dx). - Rick L. Shepherd, Oct 26 2015
a(n) = A005902(n) - A007588(n). - Peter M. Chema, Jan 09 2016
For n > 0, a(n) = lim_{m -> oo} (1/m)*1/(Sum_{i=m*n..m*(n+1)} 1/i^2), with error of ~1/m. - Richard R. Forberg, Jul 27 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Dirichlet g.f.: zeta(s-2) + zeta(s-1).
Convolution of nonnegative integers (A001477) and constant sequence (A007395).
Sum_{n >= 0} a(n)/n! = 3*exp(1). (End)
From Charlie Marion, Mar 06 2020: (Start)
a(n)*a(n+2k-1) + (n+k)^2 = ((2n+1)*k + n^2)^2.
a(n)*a(n+2k) + k^2 = ((2n+1)*k + a(n))^2. (End)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi. - Amiram Eldar, Jan 20 2021
A generalization of the Dec 29 2003 formula, a(n)*a(n+1) = a(n*(n+2)), follows. a(n)*a(n+k) = a(n*(n+k+1)) + (k-1)*n*(n+k+1). - Charlie Marion, Jan 02 2023
a(n) = A016742(n) - A049450(n). - Leo Tavares, Mar 15 2025

Extensions

Additional comments from Michael Somos
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009

A005843 The nonnegative even numbers: a(n) = 2n.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 0

Views

Author

Keywords

Comments

-2, -4, -6, -8, -10, -12, -14, ... are the trivial zeros of the Riemann zeta function. - Vivek Suri (vsuri(AT)jhu.edu), Jan 24 2008
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 2-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
A134452(a(n)) = 0; A134451(a(n)) = 2 for n > 0. - Reinhard Zumkeller, Oct 27 2007
Omitting the initial zero gives the number of prime divisors with multiplicity of product of terms of n-th row of A077553. - Ray Chandler, Aug 21 2003
A059841(a(n))=1, A000035(a(n))=0. - Reinhard Zumkeller, Sep 29 2008
(APSO) Alternating partial sums of (a-b+c-d+e-f+g...) = (a+b+c+d+e+f+g...) - 2*(b+d+f...), it appears that APSO(A005843) = A052928 = A002378 - 2*(A116471), with A116471=2*A008794. - Eric Desbiaux, Oct 28 2008
A056753(a(n)) = 1. - Reinhard Zumkeller, Aug 23 2009
Twice the nonnegative numbers. - Juri-Stepan Gerasimov, Dec 12 2009
The number of hydrogen atoms in straight-chain (C(n)H(2n+2)), branched (C(n)H(2n+2), n > 3), and cyclic, n-carbon alkanes (C(n)H(2n), n > 2). - Paul Muljadi, Feb 18 2010
For n >= 1; a(n) = the smallest numbers m with the number of steps n of iterations of {r - (smallest prime divisor of r)} needed to reach 0 starting at r = m. See A175126 and A175127. A175126(a(n)) = A175126(A175127(n)) = n. Example (a(4)=8): 8-2=6, 6-2=4, 4-2=2, 2-2=0; iterations has 4 steps and number 8 is the smallest number with such result. - Jaroslav Krizek, Feb 15 2010
For n >= 1, a(n) = numbers k such that arithmetic mean of the first k positive integers is not integer. A040001(a(n)) > 1. See A145051 and A040001. - Jaroslav Krizek, May 28 2010
Union of A179082 and A179083. - Reinhard Zumkeller, Jun 28 2010
a(k) is the (Moore lower bound on and the) order of the (k,4)-cage: the smallest k-regular graph having girth four: the complete bipartite graph with k vertices in each part. - Jason Kimberley, Oct 30 2011
For n > 0: A048272(a(n)) <= 0. - Reinhard Zumkeller, Jan 21 2012
Let n be the number of pancakes that have to be divided equally between n+1 children. a(n) is the minimal number of radial cuts needed to accomplish the task. - Ivan N. Ianakiev, Sep 18 2013
For n > 0, a(n) is the largest number k such that (k!-n)/(k-n) is an integer. - Derek Orr, Jul 02 2014
a(n) when n > 2 is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
It appears that for n > 2, a(n) = A020482(n) + A002373(n), where all sequences are infinite. This is consistent with Goldbach's conjecture, which states that every even number > 2 can be expressed as the sum of two prime numbers. - Bob Selcoe, Mar 08 2015
Number of partitions of 4n into exactly 2 parts. - Colin Barker, Mar 23 2015
Number of neighbors in von Neumann neighborhood. - Dmitry Zaitsev, Nov 30 2015
Unique solution b( ) of the complementary equation a(n) = a(n-1)^2 - a(n-2)*b(n-1), where a(0) = 1, a(1) = 3, and a( ) and b( ) are increasing complementary sequences. - Clark Kimberling, Nov 21 2017
Also the maximum number of non-attacking bishops on an (n+1) X (n+1) board (n>0). (Cf. A000027 for rooks and queens (n>3), A008794 for kings or A030978 for knights.) - Martin Renner, Jan 26 2020
Integer k is even positive iff phi(2k) > phi(k), where phi is Euler's totient (A000010) [see reference De Koninck & Mercier]. - Bernard Schott, Dec 10 2020
Number of 3-permutations of n elements avoiding the patterns 132, 213, 312 and also number of 3-permutations avoiding the patterns 213, 231, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
a(n) gives the y-value of the integral solution (x,y) of the Pellian equation x^2 - (n^2 + 1)*y^2 = 1. The x-value is given by 2*n^2 + 1 (see Tattersall). - Stefano Spezia, Jul 24 2025

Examples

			G.f. = 2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 529a pp. 71 and 257, Ellipses, 2004, Paris.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.

Crossrefs

a(n)=2*A001477(n). - Juri-Stepan Gerasimov, Dec 12 2009
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), this sequence (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A231200 (boustrophedon transform).

Programs

Formula

G.f.: 2*x/(1-x)^2.
E.g.f.: 2*x*exp(x). - Geoffrey Critzer, Aug 25 2012
G.f. with interpolated zeros: 2x^2/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*sinh(x). - Geoffrey Critzer, Aug 25 2012
Inverse binomial transform of A036289, n*2^n. - Joshua Zucker, Jan 13 2006
a(0) = 0, a(1) = 2, a(n) = 2a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = Sum_{k=1..n} floor(6n/4^k + 1/2). - Vladimir Shevelev, Jun 04 2009
a(n) = A034856(n+1) - A000124(n) = A000217(n) + A005408(n) - A000124(n) = A005408(n) - 1. - Jaroslav Krizek, Sep 05 2009
a(n) = Sum_{k>=0} A030308(n,k)*A000079(k+1). - Philippe Deléham, Oct 17 2011
Digit sequence 22 read in base n-1. - Jason Kimberley, Oct 30 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Dec 23 2011
a(n) = 2*n = Product_{k=1..2*n-1} 2*sin(Pi*k/(2*n)), n >= 0 (undefined product := 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
From Ilya Gutkovskiy, Aug 19 2016: (Start)
Convolution of A007395 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 = (1/2)*A002162 = (1/10)*A016655. (End)
From Bernard Schott, Dec 10 2020: (Start)
Sum_{n>=1} 1/a(n)^2 = Pi^2/24 = A222171.
Sum_{n>=1} (-1)^(n+1)/a(n)^2 = Pi^2/48 = A245058. (End)

A013661 Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2.

Original entry on oeis.org

1, 6, 4, 4, 9, 3, 4, 0, 6, 6, 8, 4, 8, 2, 2, 6, 4, 3, 6, 4, 7, 2, 4, 1, 5, 1, 6, 6, 6, 4, 6, 0, 2, 5, 1, 8, 9, 2, 1, 8, 9, 4, 9, 9, 0, 1, 2, 0, 6, 7, 9, 8, 4, 3, 7, 7, 3, 5, 5, 5, 8, 2, 2, 9, 3, 7, 0, 0, 0, 7, 4, 7, 0, 4, 0, 3, 2, 0, 0, 8, 7, 3, 8, 3, 3, 6, 2, 8, 9, 0, 0, 6, 1, 9, 7, 5, 8, 7, 0
Offset: 1

Views

Author

Keywords

Comments

"In 1736 he [Leonard Euler, 1707-1783] discovered the limit to the infinite series, Sum 1/n^2. He did it by doing some rather ingenious mathematics using trigonometric functions that proved the series summed to exactly Pi^2/6. How can this be? ... This demonstrates one of the most startling characteristics of mathematics - the interconnectedness of, seemingly, unrelated ideas." - Clawson [See Hardy and Wright, Theorems 332 and 333. - N. J. A. Sloane, Jan 20 2017]
Also dilogarithm(1). - Rick L. Shepherd, Jul 21 2004
Also Integral_{x>=0} x/(exp(x)-1) dx. [Abramowitz-Stegun, 23.2.7., for s=2, p. 807]
For the partial sums see the fractional sequence A007406/A007407.
Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of volume of an ellipsoid to the circumscribed cuboid. Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of surface area of a sphere to the circumscribed cube. - Omar E. Pol, Oct 07 2011
1 < n^2/(eulerphi(n)*sigma(n)) < zeta(2) for n > 1. - Arkadiusz Wesolowski, Sep 04 2012
Volume of a sphere inscribed in a cube of volume Pi. More generally, Pi^x/6 is the volume of an ellipsoid inscribed in a cuboid of volume Pi^(x-1). - Omar E. Pol, Feb 17 2016
Surface area of a sphere inscribed in a cube of surface area Pi. More generally, Pi^x/6 is the surface area of a sphere inscribed in a cube of surface area Pi^(x-1). - Omar E. Pol, Feb 19 2016
zeta(2)+1 is a weighted average of the integers, n > 2, using zeta(n)-1 as the weights for each n. We have: Sum_{n >= 2} (zeta(n)-1) = 1 and Sum_{n >= 2} n*(zeta(n)-1) = zeta(2)+1. - Richard R. Forberg, Jul 14 2016
zeta(2) is the expected value of sigma(n)/n. - Charlie Neder, Oct 22 2018
Graham shows that a rational number x can be expressed as a finite sum of reciprocals of distinct squares if and only if x is in [0, Pi^2/6-1) U [1, Pi^2/6). See section 4 for other results and Theorem 5 for the underlying principle. - Charles R Greathouse IV, Aug 04 2020
From Peter Bala, Aug 24 2025: (Start)
By definition, zeta(2) = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k^2. The convergence is slow. For example, s(50) = 1.6(25...) is only correct to 1 decimal digit.
Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). It appears that S(n) converges to zeta(2) much more rapidly. For example, S(50) = 1.64493406684822643647241516664602(137...) gives zeta(2) correct to 32 decimal digits. Cf. A073004. (End)

Examples

			1.6449340668482264364724151666460251892189499012067984377355582293700074704032...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • F. Aubonnet, D. Guinin and B. Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 97.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.
  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington, D.C., 1999, p. xxii.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 5.16, pp. 20, 365.
  • Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
  • A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 10, 161-162.
  • G. F. Simmons, Calculus Gems, Section B.15, B.24, pp. 270-271, 323-325, McGraw Hill, 1992.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99, Satz 1.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 261.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A001008 (H(n): numerators), A002805 (denominators), A013679 (continued fraction), A002117 (zeta(3)), A013631 (cont.frac. for zeta(3)), A013680 (cont.frac. for zeta(4)), 1/A059956, A108625, A142995, A142999.
Cf. A000290.

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi^2/6))); // Vincenzo Librandi, Oct 13 2015
    
  • Maple
    evalf(Pi^2/6,120); # Muniru A Asiru, Oct 25 2018
    # Calculates an approximation with n exact decimal places (small deviation
    # in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
    zeta2 := proc(n) local q, s, w, v, k; q := 0; s := 0; w := 1; v := 4;
    for k from 2 by 2 to 7*n/2 do
        w := w*v/k;
        q := q + v;
        v := v + 8;
        s := s + 1/(w*q);
    od; 12*s; evalf[n](%) end:
    zeta2(1000); # Peter Luschny, Jun 10 2020
  • Mathematica
    RealDigits[N[Pi^2/6, 100]][[1]]
    RealDigits[Zeta[2],10,120][[1]] (* Harvey P. Dale, Jan 08 2021 *)
  • Maxima
    fpprec : 100$ ev(bfloat(zeta(2)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    default(realprecision, 200); Pi^2/6
    
  • PARI
    default(realprecision, 200); dilog(1)
    
  • PARI
    default(realprecision, 200); zeta(2)
    
  • PARI
    A013661(n)={localprec(n+2); Pi^2/.6\10^n%10} \\ Corrected and improved by M. F. Hasler, Apr 20 2021
    
  • PARI
    default(realprecision, 20080); x=Pi^2/6; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013661.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
    
  • PARI
    sumnumrat(1/x^2, 1) \\ Charles R Greathouse IV, Jan 20 2022
    
  • Python
    # Use some guard digits when computing.
    # BBP formula (3 / 16) P(2, 64, 6, (16, -24, -8, -6,  1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPzeta2(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            sixk = dec(6 * k)
            s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2
                     - dec(8)  / (sixk + 3) ** 2 - dec(6)  / (sixk + 4) ** 2
                     + dec(1)  / (sixk + 5) ** 2 )
            f /= g
        return (s * dec(3)) / dec(16)
    print(BBPzeta2(2000))  # Peter Luschny, Nov 01 2023

Formula

Limit_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/2))) = zeta(2) and in general we have lim_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/m))) = zeta(m), m >= 2. - Yalcin Aktar, Jul 14 2005
Equals Integral_{x=0..1} (log(x)/(x-1)) dx or Integral_{x>=1} (log(x/(x-1))/x) dx. - Jean-François Alcover, May 30 2013
For s >= 2 (including Complex), zeta(s) = Product_{n >= 1} prime(n)^s/(prime(n)^s - 1). - Fred Daniel Kline, Apr 10 2014
Also equals 1 + Sum_{n>=0} (-1)^n*StieltjesGamma(n)/n!. - Jean-François Alcover, May 07 2014
zeta(2) = Sum_{n>=1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n). - Mikael Aaltonen, Jan 10 2015
zeta(2) = Sum_{n>=1} (((sqrt(5)-1)/2/sqrt(5))^n/n^2) + Sum_{n>=1} (((sqrt(5)+1)/2/sqrt(5))^n/ n^2) + log((sqrt(5)-1)/2/sqrt(5))log((sqrt(5)+1)/2/sqrt(5)). - Seiichi Kirikami, Oct 14 2015
The above formula can also be written zeta(2) = dilog(x) + dilog(y) + log(x)*log(y) where x = (1-1/sqrt(5))/2 and y=(1+1/sqrt(5))/2. - Peter Luschny, Oct 16 2015
zeta(2) = Integral_{x>=0} 1/(1 + e^x^(1/2)) dx, because (1 - 1/2^(s-1))*Gamma[1 + s]*Zeta[s] = Integral_{x>=0} 1/(1 + e^x^(1/s)) dx. After Jean-François Alcover in A002162. - Mats Granvik, Sep 12 2016
zeta(2) = Product_{n >= 1} (144*n^4)/(144*n^4 - 40*n^2 + 1). - Fred Daniel Kline, Oct 29 2016
zeta(2) = lim_{n->oo} (1/n) * Sum_{k=1..n} A017665(k)/A017666(k). - Dimitri Papadopoulos, May 10 2019 [See the Walfisz reference, and a comment in A284648, citing also the Sándor et al. Handbook. - Wolfdieter Lang, Aug 22 2019]
Equals Sum_{k>=1} H(k)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 16 2020
Equals (8/3)*(1/2)!^4 = (8/3)*Gamma(3/2)^4. - Gary W. Adamson, Aug 17 2021
Equals ((m+1)/m) * Integral_{x=0..1} log(Sum {k=0..m} x^k )/x dx, m > 0 (Aubonnet reference). - _Bernard Schott, Feb 11 2022
Equals 1 + Sum_{n>=1} n*(zeta(n+2)-1). - Richard R. Forberg, Jun 04 2023; improved by Natalia L. Skirrow, Jul 25 2025
Equals Psi'(1) where Psi'(x) is the trigamma function (by Abramowitz Stegun 6.4.2). - Andrea Pinos, Oct 22 2024
Equals Integral_{x=0..1} Integral_{y=0..1} 1/(1 - x*y) dy dx. - Kritsada Moomuang, May 22 2025
Equals 1 + Sum_{n>=1} 1/(n^2*(n+1)). - Natalia L. Skirrow, Jul 25 2025

Extensions

Edited by N. J. A. Sloane, Nov 22 2023

A001227 Number of odd divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Keywords

Comments

Also (1) number of ways to write n as difference of two triangular numbers (A000217), see A136107; (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff
Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) See A069283. - Henry Bottomley, Apr 13 2000
This has been described as Sylvester's theorem, but to reduce ambiguity I suggest calling it Sylvester's enumeration. - Gus Wiseman, Oct 04 2022
a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003
a(n) = 1 if and only if n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005
Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005
For n odd, n is prime if and only if a(n) = 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006
Lengths of rows of triangle A182469;
Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013
Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014
Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014
Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014
A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016
Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016
a(n) is odd if and only if n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016
a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016
a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
                              Diagram
   n   a(n)                         _
   1     1                        _|1|
   2     1                      _|1 _|
   3     2                    _|1  |1|
   4     1                  _|1   _| |
   5     2                _|1    |1 _|
   6     2              _|1     _| |1|
   7     2            _|1      |1  | |
   8     1          _|1       _|  _| |
   9     3        _|1        |1  |1 _|
  10     2      _|1         _|   | |1|
  11     2    _|1          |1   _| | |
  12     2   |1            |   |1  | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
  • Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.

Crossrefs

If this sequence counts gapless sets by sum (by Sylvester's enumeration), these sets are ranked by A073485 and A356956. See also A055932, A066311, A073491, A107428, A137921, A333217, A356224, A356841, A356845.
Dirichlet inverse is A327276.

Programs

  • Haskell
    a001227 = sum . a247795_row
    -- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
    
  • Maple
    for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
    A001227 := proc(n) local a,d;
        a := 1 ;
        for d in ifactors(n)[2] do
            if op(1,d) > 2 then
                a := a*(op(2,d)+1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
    Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
    f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := Sum[  Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
    a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
    Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
    (* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
    (* cl = current level, cs = current subparts count *)
    a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
    a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
    
  • PARI
    a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
    
  • PARI
    a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint
    def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
  • SageMath
    def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
    [A001227(n) for n in (1..80)]  # Peter Luschny, Feb 01 2012
    

Formula

Dirichlet g.f.: zeta(s)^2*(1-1/2^s).
Comment from N. J. A. Sloane, Dec 02 2020: (Start)
By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:
A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...
= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))
= Sum_{k >= 1} x^k/(1-x^(2*k))
= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].
(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)
G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010
a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001
a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005
Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.
a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)
a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007
a(n) = A000005(n) - A183063(n).
a(n) = d(n) if n is odd, or d(n) - d(n/2) if n is even, where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011
Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011
a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012
a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015
a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015
a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016
Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017
a(n) = A000005(2n) - A000005(n) = A099777(n)-A000005(n). - Danny Rorabaugh, Oct 03 2017
L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019
a(n) = A003056(n) - A238005(n). - Omar E. Pol, Sep 12 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023
a(n) = Sum_{i=1..n} (-1)^(i+1)*A135539(n,i). - Ridouane Oudra, Apr 13 2023

A000196 Integer part of square root of n. Or, number of positive squares <= n. Or, n appears 2n+1 times.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10
Offset: 0

Views

Author

Keywords

Comments

Also the integer part of the geometric mean of the divisors of n. - Amarnath Murthy, Dec 19 2001
Number of numbers k (<= n) with an odd number of divisors. - Benoit Cloitre, Sep 07 2002
Also, for n > 0, the number of digits when writing n in base where place values are squares, cf. A007961; A190321(n) <= a(n). - Reinhard Zumkeller, May 08 2011
The least monotonic left inverse of squares, A000290. That is, the lexicographically least nondecreasing sequence a(n) such that a(A000290(n)) = n. - Antti Karttunen, Oct 06 2017

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 73, problem 23.
  • Lionel Levine, Fractal sequences and restricted Nim, Ars Combin. 80 (2006), 113-127.
  • Paul J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, 1986, p. 28.
  • N. J. A. Sloane and Allan Wilks, On sequences of Recaman type, paper in preparation, 2006.

Crossrefs

Programs

  • Haskell
    import Data.Bits (shiftL, shiftR)
    a000196 :: Integer -> Integer
    a000196 0 = 0
    a000196 n = newton n (findx0 n 1) where
       -- find x0 == 2^(a+1), such that 4^a <= n < 4^(a+1).
       findx0 0 b = b
       findx0 a b = findx0 (a `shiftR` 2) (b `shiftL` 1)
       newton n x = if x' < x then newton n x' else x
                    where x' = (x + n `div` x) `div` 2
    a000196_list = concat $ zipWith replicate [1,3..] [0..]
    -- Reinhard Zumkeller, Apr 12 2012, Oct 23 2010
    
  • Julia
    a(n) = isqrt(n) # Paul Muljadi, Jun 03 2024
  • Magma
    [Isqrt(n) : n in [0..100]];
    
  • Maple
    Digits := 100; A000196 := n->floor(evalf(sqrt(n)));
  • Mathematica
    Table[n, {n, 0, 20}, {2n + 1}] //Flatten (* Zak Seidov Mar 19 2011 *)
    IntegerPart[Sqrt[Range[0, 110]]] (* Harvey P. Dale, May 23 2012 *)
    Floor[Sqrt[Range[0, 99]]] (* Alonso del Arte, Dec 31 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]  - 1) / (2 (1 - x)), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
  • PARI
    {a(n) = if( n<0, 0, sqrtint(n))};
    
  • Python
    # from http://code.activestate.com/recipes/577821-integer-square-root-function/
    def A000196(n):
      if n < 0:
        raise ValueError('only defined for nonnegative n')
      if n == 0:
        return 0
      a, b = divmod(n.bit_length(), 2)
      j = 2**(a+b)
      while True:
        k = (j + n//j)//2
        if k >= j:
          return j
        j = k
    print([A000196(n)for n in range(102)])
    # Jason Kimberley, Nov 09 2016
    
  • Python
    from math import isqrt
    def a(n): return isqrt(n)
    print([a(n) for n in range(102)]) # Michael S. Branicky, Feb 15 2023
    
  • Scheme
    ;; The following implementation uses higher order function LEFTINV-LEASTMONO-NC2NC from my IntSeq-library. It returns the least monotonic left inverse of any strictly growing function (see the comment-section for the definition) and although it does not converge as fast to the result as many specialized integer square root algorithms, at least it does not involve any floating point arithmetic. Thus with correctly implemented bignums it will produce correct results even with very large arguments, in contrast to just taking the floor of (sqrt n).
    ;; Source of LEFTINV-LEASTMONO-NC2NC can be found under https://github.com/karttu/IntSeq/blob/master/src/Transforms/transforms-core.ss and the definition of A000290 is given under that entry.
    (define A000196 (LEFTINV-LEASTMONO-NC2NC 0 0 A000290)) ;; Antti Karttunen, Oct 06 2017
    

Formula

a(n) = Card(k, 0 < k <= n such that k is relatively prime to core(k)) where core(x) is the squarefree part of x. - Benoit Cloitre, May 02 2002
a(n) = a(n-1) + floor(n/(a(n-1)+1)^2), a(0) = 0. - Reinhard Zumkeller, Apr 12 2004
From Hieronymus Fischer, May 26 2007: (Start)
a(n) = Sum_{k=1..n} A010052(k).
G.f.: g(x) = (1/(1-x))*Sum_{j>=1} x^(j^2) = (theta_3(0, x) - 1)/(2*(1-x)) where theta_3 is a Jacobi theta function. (End)
a(n) = floor(A000267(n)/2). - Reinhard Zumkeller, Jun 27 2011
a(n) = floor(sqrt(n)). - Arkadiusz Wesolowski, Jan 09 2013
Sum_{n>0} 1/a(n)^s = 2*zeta(s-1) + zeta(s), where zeta is the Riemann zeta function. - Enrique Pérez Herrero, Oct 15 2013
From Wesley Ivan Hurt, Dec 31 2013: (Start)
a(n) = Sum_{i=1..n} (A000005(i) mod 2), n > 0.
a(n) = (1/2)*Sum_{i=1..n} (1 - (-1)^A000005(i)), n > 0. (End)
a(n) = sqrt(A048760(n)), n >= 0. - Wolfdieter Lang, Mar 24 2015
a(n) = Sum_{k=1..n} floor(n/k)*lambda(k) = Sum_{m=1..n} Sum_{d|m} lambda(d) where lambda(j) is Liouville lambda function, A008836. - Geoffrey Critzer, Apr 01 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, May 02 2023

A008588 Nonnegative multiples of 6.

Original entry on oeis.org

0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
Offset: 0

Views

Author

Keywords

Comments

For n > 3, the number of squares on the infinite 3-column half-strip chessboard at <= n knight moves from any fixed point on the short edge.
Second differences of A000578. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A001018(n). - Reinhard Zumkeller, Feb 24 2009
These numbers can be written as the sum of four cubes (i.e., 6*n = (n+1)^3 + (n-1)^3 + (-n)^3 + (-n)^3). - Arkadiusz Wesolowski, Aug 09 2013
A122841(a(n)) > 0 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Surface area of a cube with side sqrt(n). - Wesley Ivan Hurt, Aug 24 2014
a(n) is representable as a sum of three but not two consecutive nonnegative integers, e.g., 6 = 1 + 2 + 3, 12 = 3 + 4 + 5, 18 = 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016 (Corrected by David A. Corneth, Aug 12 2016)
Numbers with three consecutive divisors: for some k, each of k, k+1, and k+2 divide n. - Charles R Greathouse IV, May 16 2016
Numbers k for which {phi(k),phi(2k),phi(3k)} is an arithmetic progression. - Ivan Neretin, Aug 12 2016

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.

Crossrefs

Essentially the same as A008458.
Cf. A044102 (subsequence).

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 6*n = 2*a(n-1) - a(n-2).
G.f.: 6*x/(1-x)^2. (End)
a(n) = Sum_{k>=0} A030308(n,k)*6*2^k. - Philippe Deléham, Oct 24 2011
a(n) = Sum_{k=2n-1..2n+1} k. - Wesley Ivan Hurt, Nov 22 2015
From Ilya Gutkovskiy, Aug 12 2016: (Start)
E.g.f.: 6*x*exp(x).
Convolution of A010722 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/6 = A002162*A020793. (End)
a(n) = 6 * A001477(n). - David A. Corneth, Aug 12 2016

A242091 a(n) = r * (n-1)! where r is the rational number that satisfies the equation Sum_{k>=n} (-1)^(k + n)/C(k,n) = n*2^(n-1)*log(2) - r.

Original entry on oeis.org

0, 2, 15, 128, 1310, 15864, 222936, 3572736, 64354608, 1287495360, 28328889600, 679936896000, 17678878214400, 495015296025600, 14850552286080000, 475219068007219200, 16157470542709708800, 581669316147767500800, 22103440771676298854400
Offset: 1

Views

Author

Richard R. Forberg, Aug 14 2014

Keywords

Comments

The sum of the terms of the inverse of the binomial coefficients, 1/C(k,n), with alternating signs, equals an irrational number which is expressed as m * log(2) - r, where m is the integer n*2^(n-1) = A001787(n), n>=1, and r is rational. a(n) = r * (n-1)!.

Examples

			Sum_{k>=1} (-1)^(k + 1)/C(k,1) = Sum_{k>=1} (-1)^(k + 1)/k = log(2) where m = 1 and r = 0. (See A002162.)
Sum_{k>=2} (-1)^(k + 2)/C(k,2) = 4*log(2) - 2. (See A000217.)
Sum_{k>=3} (-1)^(k + 3)/C(k,3) = 12*log(2) - 15/2. (See A000292.)
Sum_{k>=4} (-1)^(k + 4)/C(k,4) = 30*log(2) - 64/3. (See A000332.)
Sum_{k>=5} (-1)^(k + 5)/C(k,5) = 80*log(2) - 655/12. (See A000389.)
		

Crossrefs

Programs

  • Magma
    [n le 1 select 0 else 2*(n)*Self(n-1)+(Factorial(n) div (n-1)): n in [1..20]]; // Vincenzo Librandi, Sep 22 2015
    
  • Maple
    seq(add(2^(n-j-1)*n!/j, j=1..n-1), n=1..100); # Robert Israel, Aug 14 2014
  • Mathematica
    Table[Sum[2^(n - j - 1)*n!/j, {j, n - 1}], {n, 20}] (* Wesley Ivan Hurt, Aug 14 2014 *)
    FullSimplify[Table[-1/2*n!*(LerchPhi[1/2, 1, n] - 2^n*Log[2]),{n, 1, 20}]] (* Vaclav Kotesovec, Aug 15 2014 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace(x*log(1-x)/(2*x-1)))) \\ G. C. Greubel, Nov 25 2017

Formula

From Robert Israel, Aug 14 2014: (Start)
a(n) = n * A068102(n-1).
a(n) = n! * Sum_{j=1..(n-1)} 2^(n-j-1)/j.
a(n) = n! * (2^(n-1)*log(2)-(1/2)*LerchPhi(1/2, 1, n)).
a(n+1) = 2*(n+1)*a(n) + (n+1)!/n.
E.g.f.: x*log(1-x)/(2*x-1).
(End)
Recurrence: (n-1)*a(n) = n*(3*n-4)*a(n-1) - 2*(n-2)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 15 2014

A049541 Decimal expansion of 1/Pi.

Original entry on oeis.org

3, 1, 8, 3, 0, 9, 8, 8, 6, 1, 8, 3, 7, 9, 0, 6, 7, 1, 5, 3, 7, 7, 6, 7, 5, 2, 6, 7, 4, 5, 0, 2, 8, 7, 2, 4, 0, 6, 8, 9, 1, 9, 2, 9, 1, 4, 8, 0, 9, 1, 2, 8, 9, 7, 4, 9, 5, 3, 3, 4, 6, 8, 8, 1, 1, 7, 7, 9, 3, 5, 9, 5, 2, 6, 8, 4, 5, 3, 0, 7, 0, 1, 8, 0, 2, 2, 7, 6, 0, 5, 5, 3, 2, 5, 0, 6, 1, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

The ratio of the volume of a regular octahedron to the volume of the circumscribed sphere (which has circumradius a*sqrt(2)/2 = a*A010503, where a is the octahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A165952, A165953 and A165954. - Rick L. Shepherd, Oct 01 2009
Corresponds to a gauge point marked "M" on slide rule calculating devices in the 20th century. The Pickworth reference notes its use in calculating the area of the curved surface of a cylinder. - Peter Munn, Aug 14 2020

Examples

			0.3183098861837906715377675267450287240689192914809128974953...
		

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Baasel, p. 245. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
  • C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London, 1945, p. 53, Gauge Points.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.

Crossrefs

Programs

Formula

Equals (1/(12-16*A002162))*Sum_{n>=0} A002894(n)*H(n)/(A001025(n) * A016754(n-1)), where H(n) denotes the n-th harmonic number. - John M. Campbell, Aug 28 2016
1/Pi = Sum_{m>=0} binomial(2*m, m)^3 * (42*m+5)/(2^(12*m+4)), Ramanujan, from the J.-P. Delahaye reference. - Wolfdieter Lang, Sep 18 2018; corrected by Bernard Schott, Mar 26 2020
1/Pi = 12*Sum_{n >= 0} (-1)^n*((6*n)!/(n!^3*(3*n)!))*(13591409 + 545140134*n)/640320^(3*n + 3/2) [Chudnovsky]. - Sanjar Abrarov, Mar 31 2020
1/Pi = (sqrt(8)/9801) * Sum_{n >= 0} ((4*n)!/((n!)^4)) * (26390*n + 1103)/(396^(4*n)) [Ramanujan, 1914]. - Bernard Schott, Mar 26 2020
Equal Sum_{k>=2} tan(Pi/2^k)/2^k. - Amiram Eldar, Aug 05 2020
Floor((3/8)*Sum_{n>=1} sigma[3](n)*n/exp(Pi*n/(10^((1/5)*k+(1/5))))) mod 10, will give the k-th digit of 1/Pi. - Simon Plouffe, Dec 19 2023

A002387 Least k such that H(k) > n, where H(k) is the harmonic number Sum_{i=1..k} 1/i.

Original entry on oeis.org

1, 2, 4, 11, 31, 83, 227, 616, 1674, 4550, 12367, 33617, 91380, 248397, 675214, 1835421, 4989191, 13562027, 36865412, 100210581, 272400600, 740461601, 2012783315, 5471312310, 14872568831, 40427833596, 109894245429, 298723530401, 812014744422
Offset: 0

Views

Author

Keywords

Comments

From Dean Hickerson, Apr 19 2003: (Start)
For k >= 1, log(k + 1/2) + gamma < H(k) < log(k + 1/2) + gamma + 1/(24k^2), where gamma is Euler's constant (A001620). It is likely that the upper and lower bounds have the same floor for all k >= 2, in which case a(n) = floor(exp(n-gamma) + 1/2) for all n >= 0.
This remark is based on a simple heuristic argument. The lower and upper bounds differ by 1/(24k^2), so the probability that there's an integer between the two bounds is 1/(24k^2). Summing that over all k >= 2 gives the expected number of values of k for which there's an integer between the bounds. That sum equals Pi^2/144 - 1/24 ~ 0.02687. That's much less than 1, so it is unlikely that there are any such values of k.
(End)
Referring to A118050 and A118051, using a few terms of the asymptotic series for the inverse of H(x), we can get an expression which, with greater likelihood than mentioned above, should give a(n) for all n >= 0. For example, using the same type of heuristic argument given by Dean Hickerson, it can be shown that, with probability > 99.995%, we should have, for all n >= 0, a(n) = floor(u + 1/2 - 1/(24u) + 3/(640u^3)) where u = e^(n - gamma). - David W. Cantrell (DWCantrell(AT)sigmaxi.net)
For k > 1, H(k) is never an integer. Hence apart from the first two terms this sequence coincides with A004080. - Nick Hobson, Nov 25 2006

References

  • John H. Conway and R. K. Guy, "The Book of Numbers," Copernicus, an imprint of Springer-Verlag, NY, 1996, pages 258-259.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 28, Ellipses, Paris 2008.
  • Ronald Lewis Graham, Donald Ervin Knuth and Oren Patashnik, "Concrete Mathematics, a Foundation for Computer Science," Addison-Wesley Publishing Co., Reading, MA, 1989, Page 258-264, 438.
  • H. P. Robinson, Letter to N. J. A. Sloane, Oct 23 1973.
  • W. Sierpiński, Sur les decompositions de nombres rationnels, Oeuvres Choisies, Académie Polonaise des Sciences, Warsaw, Poland, 1974, p. 181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, pp. 54, Belin-Pour La Science, Paris 2000.

Crossrefs

Apart from initial terms, same as A004080.

Programs

  • Haskell
    a002387 n = a002387_list !! n
    a002387_list = f 0 1 where
       f x k = if hs !! k > fromIntegral x
               then k : f (x + 1) (k + 1) else f x (k + 1)
               where hs = scanl (+) 0 $ map recip [1..]
    -- Reinhard Zumkeller, Aug 04 2014
  • Mathematica
    fh[0]=0; fh[1]=1; fh[k_] := Module[{tmp}, If[Floor[tmp=Log[k+1/2]+EulerGamma]==Floor[tmp+1/(24k^2)], Floor[tmp], UNKNOWN]]; a[0]=1; a[1]=2; a[n_] := Module[{val}, val=Round[Exp[n-EulerGamma]]; If[fh[val]==n&&fh[val-1]==n-1, val, UNKNOWN]]; (* fh[k] is either floor(H(k)) or UNKNOWN *)
    f[n_] := k /. FindRoot[HarmonicNumber[k] == n, {k, Exp[n]}, WorkingPrecision -> 100] // Ceiling; f[0] = 1; Array[f, 28, 0] (* Robert G. Wilson v, Jan 24 2017 after Jean-François Alcover in A014537 *)
  • PARI
    a(n)=if(n,my(k=exp(n-Euler));ceil(solve(x=k-1.5,k+.5,intnum(y=0,1,(1-y^x)/(1-y))-n)),1) \\ Charles R Greathouse IV, Jun 13 2012
    

Formula

Note that the conditionally convergent series Sum_{k>=1} (-1)^(k+1)/k = log 2 (A002162).
Limit_{n->oo} a(n+1)/a(n) = e. - Robert G. Wilson v, Dec 07 2001
It is conjectured that, for n > 1, a(n) = floor(exp(n-gamma) + 1/2). - Benoit Cloitre, Oct 23 2002

Extensions

Terms for n >= 13 computed by Eric W. Weisstein; corrected by James R. Buddenhagen and Eric W. Weisstein, Feb 18 2001
Edited by Dean Hickerson, Apr 19 2003

A002391 Decimal expansion of natural logarithm of 3.

Original entry on oeis.org

1, 0, 9, 8, 6, 1, 2, 2, 8, 8, 6, 6, 8, 1, 0, 9, 6, 9, 1, 3, 9, 5, 2, 4, 5, 2, 3, 6, 9, 2, 2, 5, 2, 5, 7, 0, 4, 6, 4, 7, 4, 9, 0, 5, 5, 7, 8, 2, 2, 7, 4, 9, 4, 5, 1, 7, 3, 4, 6, 9, 4, 3, 3, 3, 6, 3, 7, 4, 9, 4, 2, 9, 3, 2, 1, 8, 6, 0, 8, 9, 6, 6, 8, 7, 3, 6, 1, 5, 7, 5, 4, 8, 1, 3, 7, 3, 2, 0, 8, 8, 7, 8, 7, 9, 7
Offset: 1

Views

Author

Keywords

Examples

			1.098612288668109691395245236922525704647490557822749451734694333637494...
		

References

  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 221.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A058962, A154920, A002162, A016731 (continued fraction), A073000, A105531, A254619.

Programs

  • Mathematica
    RealDigits[Log[3],10,120][[1]]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    log(3) \\ Charles R Greathouse IV, Jan 24 2012
    
  • Python
    # Use some guard digits when computing.
    # BBP formula P(1, 4, 2, (1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPlog3(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(4)
        for k in range(2 * n):
            s += f / dec(2 * k + 1)
            f /= g
        return s
    print(BBPlog3(200))  # Peter Luschny, Nov 03 2023

Formula

log(3) = Sum_{n>=1} (9*n-4)/((3*n-2)*(3*n-1)*3*n). [Jolley, Summation of Series, Dover (1961) eq 74]
log(3) = (1/4)*(1 + Sum_{m>=0} (1/9)^(k+1)*(27/(2*k+1) + 4/(2*k+2) + 1/(2*k+3))) (a BBP-type formula). - Alexander R. Povolotsky, Dec 01 2008
log(3) = 4/5 + (1/5)*Sum_{n>=0} (1/4)^n*(1/(2*n+1) + 1/(2*n+3)). - Alexander R. Povolotsky, Dec 18 2008
log(3) = Sum_{k>=0} (1/9)^(k+1)*(9/(2k+1) + 1/(2k+2)). - Jaume Oliver Lafont, Dec 22 2008
Sum_{i>=1} 1/(9^i*i) + Sum_{i>=0} 1/(9^i*(i+1/2)) = 2*log(3) (Huvent 2001). - Jaume Oliver Lafont, Oct 12 2009
Conjecture: log(3) = Sum_{k>=1} A191907(3,k)/k. - Mats Granvik, Jun 19 2011
log(3) = lim_{n->oo} Sum_{k=3^n..3^(n+1)-1} 1/k. Also see A002162. By analogy to the integral of 1/x, log(m) = lim_{n->oo} Sum_{k=m^n..m^(n+1)-1} 1/k, for any value of m > 1. - Richard R. Forberg, Aug 16 2014
From Peter Bala, Feb 04 2015: (Start)
log(3) = Sum {k >= 0} 1/((2*k + 1)*4^k).
Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} 1/((2*k + 1)*4^k). Both sequences satisfy the same second-order recurrence equation u(n) = (20*n + 6)*u(n-1) - 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion log(3) = 1 + 2/(24 - 16*3^2/(46 - 16*5^2/(66 - ... - 16*(2*n - 1)^2/((20*n + 6) - ... )))). Cf. A002162, A073000 and A105531 for similar expansions.
log(3) = 2 * Sum_{k >= 1} (-1)^(k+1)*(4/3)^k/(k*binomial(2*k,k)).
log(3) = (1/4) * Sum_{k >= 1} (-1)^(k+1) (55*k - 23)*(8/9)^k/( 2*k*(2*k - 1)*binomial(3*k,k) ).
log(3) = (1/4) * Sum_{k >= 1} (7*k + 1)*(8/3)^k/( 2*k*(2*k - 1)*binomial(3*k,k) ). (End)
log(3) = -lim_{n->oo} (n+1)th derivative of zeta(n) / n-th derivative of zeta(n). By n = 1000 there is convergence to 25 digits. A related expression: lim_{n->oo} n-th derivative of zeta(n-1) / n-th derivative of zeta(n) = 3. Also see A002581. - Richard R. Forberg, Feb 24 2015
From Peter Bala, Nov 02 2019: (Start)
log(3) = 2*Integral_{x = 0..1} (1 - x^2)/(1 + x^2 + x^4) dx = 2*( 1 - (2/3) + 1/5 + 1/7 - (2/9) + 1/11 + 1/13 - (2/15) + ... ).
log(3) = 16*Sum_{n >= 0} 1/( (6*n + 1)*(6*n + 3)*(6*n + 5) ).
log(3) = 4/5 + 64*Sum_{n >= 0} (18*n + 1)/((6*n - 5)*(6*n - 3)*(6*n - 1)*(6*n + 1)*(6*n + 7)). (End)
From Amiram Eldar, Jul 05 2020: (Start)
Equals 2*arctanh(1/2).
Equals Sum_{k>=1} (2/3)^k/k.
Equals Integral_{x=0..Pi} sin(x)dx/(2 + cos(x)). (End)
log(3) = Integral_{x = 0..1} (x^2 - 1)/log(x) dx. - Peter Bala, Nov 14 2020
From Peter Bala, Oct 28 2023: (Start)
The series representation log(3) = 16*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*(6*n + 5)) given above appears to be the case k = 0 of the following infinite family of series representations for log(3):
log(3) = c(k) + (-1)^k*d(k)*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 12*k + 5)), where c(k) is a rational approximation to log(3) and d(k) = 2^(6*k+3)/27^k * (6*k + 2)!.
The first few values of c(k) for k >= 0 are [0, 2996/2673, 89195548/81236115, 23239436137364/21153065697225, 3345533089100222564/3045237239236561677, ...]. Cf A304656. (End)
log(3) = 1 + 2*Sum_{k>=1} 1/((3*k)^3 - 3*k) [Ramanujan]. - Stefano Spezia, Jul 01 2024

Extensions

Editing and more terms from Charles R Greathouse IV, Apr 20 2010
Showing 1-10 of 263 results. Next