A016825 Positive integers congruent to 2 (mod 4): a(n) = 4*n+2, for n >= 0.
2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234
Offset: 0
Examples
0.4621171572600097585023184... = 0 + 1/(2 + 1/(6 + 1/(10 + 1/(14 + ...)))), i.e., c.f. for tanh(1/2). 2.1639534137386528487700040... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))), i.e., c.f. for coth(1/2).
References
- H. Bass, Mathematics, Mathematicians and Mathematics Education, Bull. Amer. Math. Soc. (N.S.) 42 (2004), no. 4, 417-430.
- Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
- J. R. Goldman, The Queen of Mathematics, 1998, p. 70.
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 262, 278.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- Tanya Khovanova, Recursive Sequences
- D. H. Lehmer, Continued fractions containing arithmetic progressions, Scripta Mathematica, 29 (1973): 17-24. [Annotated copy of offprint]
- I. Lukovits and D. Janezic, Enumeration of conjugated circuits in nanotubes, J. Chem. Inf. Comput. Sci. 44 (2004), 410-414.
- Vasile Mihai and Michael Woltermann, Problem 10725: The Smoothest and Roughest Permutations, Amer. Math. Monthly, 108 (March 2001), pp. 272-273.
- Paolo Emilio Ricci, Complex Spirals and Pseudo-Chebyshev Polynomials of Fractional Degree, Symmetry (2018) Vol. 10, No. 12, 671.
- William A. Stein, The modular forms database
- Eric Weisstein's World of Mathematics, Bishop Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Singly Even Number
- Eric Weisstein's World of Mathematics, Square Number
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
Flat(List([0..70], n->4*n+2)); # Stefano Spezia, Jun 17 2019
-
Haskell
a016825 = (+ 2) . (* 4) a016825_list = [2, 6 ..] -- Reinhard Zumkeller, Feb 14 2012
-
Magma
[4*n+2 : n in [0..70]];
-
Maple
a := n -> 4*n+2: seq(a(n), n = 0 .. 70); # Stefano Spezia, Jun 17 2019
-
Mathematica
Range[2, 280, 4] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) 4*Range[0, 70] +2 (* Eric W. Weisstein, Dec 01 2017 *) LinearRecurrence[{2, -1}, {2, 6}, 70] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[2*(1+x)/(1-x)^2, {x,0,70}], x] (* Eric W. Weisstein, Dec 01 2017 *) NestList[#+4&,2,60] (* Harvey P. Dale, Apr 08 2022 *)
-
PARI
a(n)= 4*n+2
-
PARI
contfrac(tanh(1/2)) \\ To illustrate the 3rd comment. - Harry J. Smith, May 09 2009 [Edited by M. F. Hasler, Mar 09 2020]
-
Sage
[4*n+2 for n in (0..70)] # G. C. Greubel, Jun 28 2019
Formula
a(n) = 4*n + 2, for n >= 0.
a(n) = 2*A005408(n). - Lekraj Beedassy, Nov 28 2003
a(n) = A118413(n+1,2) for n>1. - Reinhard Zumkeller, Apr 27 2006
From Michael Somos, Apr 11 2007: (Start)
G.f.: 2*(1+x)/(1-x)^2.
E.g.f.: 2*(1+2*x)*exp(x).
a(n) = a(n-1) + 4.
a(-1-n) = -a(n). (End)
a(n) = 8*n - a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Nov 20 2010
From Reinhard Zumkeller, Jun 11 2012, Jun 30 2012 and Jul 20 2012: (Start)
A080736(a(n)) = 0.
A007814(a(n)) = 1;
A037227(a(n)) = 3.
A214546(a(n)) = 0. (End)
a(n) = T(n+2) - T(n-2) where T(n) = n*(n+1)/2 = A000217(n). In general, if M(k,n) = 2*k*n + k, then M(k,n) = T(n+k) - T(n-k). - Charlie Marion, Feb 24 2020
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1/sqrt(2-sqrt(2)) (A285871).
Product_{n>=1} (1 + (-1)^n/a(n)) = sqrt(1-1/sqrt(2)) (A154739). (End)
Comments