cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A017353 a(n) = 10*n + 7.

Original entry on oeis.org

7, 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177, 187, 197, 207, 217, 227, 237, 247, 257, 267, 277, 287, 297, 307, 317, 327, 337, 347, 357, 367, 377, 387, 397, 407, 417, 427, 437, 447, 457, 467, 477, 487, 497, 507, 517, 527, 537
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Vincenzo Librandi, May 28 2011: (Start)
a(n) = 10*n + 7.
a(n) = 2*a(n-1) - a(n-2). (End)
G.f.: (7+3*x)/(x-1)^2. - Wesley Ivan Hurt, Mar 26 2015
From Elmo R. Oliveira, Apr 05 2025: (Start)
E.g.f.: exp(x)*(7 + 10*x).
a(n) = A016873(2*n+1). (End)

A324297 Positive integers k that are the product of two integers ending with 6.

Original entry on oeis.org

36, 96, 156, 216, 256, 276, 336, 396, 416, 456, 516, 576, 636, 676, 696, 736, 756, 816, 876, 896, 936, 996, 1056, 1116, 1176, 1196, 1216, 1236, 1296, 1356, 1376, 1416, 1456, 1476, 1536, 1596, 1656, 1696, 1716, 1776, 1836, 1856, 1896, 1956, 1976, 2016, 2076, 2116
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms end with 6 (A017341).

Examples

			36 = 6*6, 96 = 6*16, 216 = 6*36, 256 = 16*16, 276 = 6*46, ...
		

Crossrefs

Cf. A000400, A017341 (supersequence), A324298, A053742 (ending with 5).

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a],AppendTo[a,10*n+6]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(n) = {if (isok6(n), my(d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1)));); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2117)) # Michael S. Branicky, Aug 18 2021

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 18 2021

A337856 Number of positive integers with n digits that are the product of two integers ending with 6.

Original entry on oeis.org

0, 2, 20, 230, 2515, 26889, 282211, 2930013, 30196730, 309564822, 3161099901, 32182595954, 326874672928, 3313770788984
Offset: 1

Views

Author

Stefano Spezia, Sep 27 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A324297.

Crossrefs

Programs

  • Python
    def A337856(n):
        k, n1, n2, pset = 0, 10**(n-1)//2-18, 10**n//2-18, set()
        while 50*k**2+60*k < n2:
            a, b = divmod(n1-30*k,50*k+30)
            m = max(k,a+int(b>0))
            r = 50*k*m+30*(k+m)
            while r < n2:
                pset.add(r)
                m += 1
                r += 50*k+30
            k += 1
        return len(pset) # Chai Wah Wu, Sep 26 2021

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(5) corrected by and a(6)-a(9) from Jinyuan Wang, Oct 01 2020
a(10)-a(13) from Bert Dobbelaere, Oct 20 2020
a(14) from Martin Ehrenstein, Aug 06 2021

A347253 Positive integers that are the product of two integers ending with 4.

Original entry on oeis.org

16, 56, 96, 136, 176, 196, 216, 256, 296, 336, 376, 416, 456, 476, 496, 536, 576, 616, 656, 696, 736, 756, 776, 816, 856, 896, 936, 976, 1016, 1036, 1056, 1096, 1136, 1156, 1176, 1216, 1256, 1296, 1316, 1336, 1376, 1416, 1456, 1496, 1536, 1576, 1596, 1616, 1656
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Examples

			16 = 4*4, 56 = 4*14, 96 = 4*24, 136 = 4*34, 176 = 4*44, 196 = 14*14, 216 = 4*54, ...
		

Crossrefs

Cf. A017341 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347254, A347255.

Programs

  • Mathematica
    a={}; For[n=0, n<=200, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && 10*n+6>Max[a], AppendTo[a, 10*n+6]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1660)) # Michael S. Branicky, Aug 24 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A324298 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 6 (A324297).

Original entry on oeis.org

3, 9, 15, 21, 25, 27, 33, 39, 41, 45, 51, 57, 63, 67, 69, 73, 75, 81, 87, 89, 93, 99, 105, 111, 117, 119, 121, 123, 129, 135, 137, 141, 145, 147, 153, 159, 165, 169, 171, 177, 183, 185, 189, 195, 197, 201, 207, 211, 213, 217, 219, 223, 225, 231, 233, 237, 243, 249
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms of this sequence are odd.
Why? If an integer 10*k+6 = (10*a+6) * (10*b+6), then k = 10*a*b + 6*(a+b) + 3, so k is odd. - Bernard Schott, May 13 2019

Examples

			145 is a term because 26*56 = 1456 = 145*10 + 6. - _Bernard Schott_, May 13 2019
		

Crossrefs

Cf. A017341, A053742 (ending with 5), A324297, A337856, A346389.

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[10*a+6],AppendTo[a,n]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(k) = {my(n=10*k+6, d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1))); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(6, 10*lim//6+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(249)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A324297(n) - 6)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A324297(n) - 6)/10 and lim_{n->infinity} A324297(n)/A324297(n-1) = 1. - Stefano Spezia, Aug 21 2021

A166728 Positive integers with English names ending in "x".

Original entry on oeis.org

6, 26, 36, 46, 56, 66, 76, 86, 96, 106, 126, 136, 146, 156, 166, 176, 186, 196, 206, 226, 236, 246, 256, 266, 276, 286, 296, 306, 326, 336, 346, 356, 366, 376, 386, 396, 406, 426, 436, 446, 456, 466, 476, 486, 496, 506, 526, 536, 546, 556, 566, 576, 586, 596
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Examples

			Fifty-six (56) is a term; sixteen (16) is not a term (but is a term of A060228).
		

Crossrefs

Programs

  • Maple
    seq(seq(6+10*i+100*j,i=[0,$2..9]),j=0..10); # Robert Israel, Jul 01 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (6 + 20 x + 10 x^2 + 10 x^3 + 10 x^4 + 10 x^5 + 10 x^6 + 10 x^7 + 10 x^8 + 4 x^9)/(1 - x - x^9 + x^10), {x, 0, 54}], x] (* Michael De Vlieger, Jul 01 2018 *)
  • Python
    def agen(lim): yield from (k for k in range(6, lim+1, 10) if k%100 != 16)
    print([an for an in agen(600)]) # Michael S. Branicky, Jun 26 2021

Formula

A017341 MINUS {n | n = 16 mod 100}.
From Robert Israel, Jul 01 2018: (Start)
a(n+9) = a(n)+100.
G.f.: x*(6+20*x+10*x^2+10*x^3+10*x^4+10*x^5+10*x^6+10*x^7+10*x^8+4*x^9)/(1-x-x^9+x^10). (End)

A202803 a(n) = n*(5*n+1).

Original entry on oeis.org

0, 6, 22, 48, 84, 130, 186, 252, 328, 414, 510, 616, 732, 858, 994, 1140, 1296, 1462, 1638, 1824, 2020, 2226, 2442, 2668, 2904, 3150, 3406, 3672, 3948, 4234, 4530, 4836, 5152, 5478, 5814, 6160, 6516, 6882, 7258, 7644, 8040, 8446, 8862, 9288, 9724, 10170
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

First bisection of A219190. - Bruno Berselli, Nov 15 2012
a(n)*Pi is the total length of 5 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A017341. The spiral length ratio rounded down [floor(L(n)/L(1))] is A032793. See illustration in links. - Kival Ngaokrajang, Dec 27 2013

Examples

			G.f. = 6*x + 22*x^2 + 48*x^3 + 84*x^4 + 130*x^5 +186*x^6 + 252*x^7 + 328*x^8 + ...
		

Crossrefs

Cf. sequences listed in A254963.

Programs

Formula

a(n) = 5*n^2 + n.
a(n) = A033429(n) + n. - Omar E. Pol, Dec 24 2011
G.f.: 2*x*(3+2*x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 6, a(2) = 22. - Philippe Deléham, Mar 27 2013
a(n) = A131242(10n+5). - Philippe Deléham, Mar 27 2013
a(n) = 2*A005475(n). - Philippe Deléham, Mar 27 2013
a(n) = A168668(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = (n+1)^3 - (1 + n + n*(n-1) + n*(n-1)*(n-2)). - Michael Somos, Aug 10 2014
E.g.f.: x*(6+5*x)*exp(x). - G. C. Greubel, Aug 22 2017
Sum_{n>=1} 1/a(n) = 5*(1-log(5)/4) - sqrt(1+2/sqrt(5))*Pi/2 -sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). - Amiram Eldar, Jul 19 2022

A273373 Squares ending in digit 6.

Original entry on oeis.org

16, 36, 196, 256, 576, 676, 1156, 1296, 1936, 2116, 2916, 3136, 4096, 4356, 5476, 5776, 7056, 7396, 8836, 9216, 10816, 11236, 12996, 13456, 15376, 15876, 17956, 18496, 20736, 21316, 23716, 24336, 26896, 27556, 30276, 30976, 33856, 34596, 37636, 38416, 41616
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

These are the only squares whose second last digit is odd. This implies that the only squares whose last two digits are the same are those ending with 0 or 4; those ending with 1, 5, and 9 are paired with even second last digits. - Waldemar Puszkarz, May 24 2016

Crossrefs

Cf. A017341 (numbers ending in 6), A017343 (cubes ending in 6).
Cf. squares with last digit k: A017270 (k=0), A273372 (k=1), A273375 (k=4), A017330 (k=5), this sequence (k=6), A273374 (k=9).

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 6];
    
  • Magma
    [(10*n - 3*(-1)^n - 5)^2/4: n in [1..50]];
  • Maple
    seq(seq((10*i+j)^2,j=[4,6]),i=0..20); # Robert Israel, May 24 2016
  • Mathematica
    Table[(10 n - 3 (-1)^n - 5)^2/4, {n, 1, 50}]
    CoefficientList[Series[4 (4 + 5 x + 32 x^2 + 5 x^3 + 4 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x]
    Select[Range[250]^2,Mod[#,10]==6&] (* Harvey P. Dale, May 31 2020 *)

Formula

G.f.: 4*x*(4 + 5*x + 32*x^2 + 5*x^3 + 4*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 4*A047221(n)^2 = (10*n - 3*(-1)^n - 5)^2/4.
a(n) = A090773(n)^2. - Michel Marcus, May 25 2016
Sum_{n>=1} 1/a(n) = 2*Pi^2/(25*(5+sqrt(5))). - Amiram Eldar, Feb 16 2023

Extensions

Corrected and extended by Bruno Berselli, May 23 2016

A346389 a(n) is the number of proper divisors of A324297(n) ending with 6.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 4, 2, 1, 2, 2, 3, 3, 2, 2, 4, 2, 5, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 4, 3, 4, 2, 5, 3, 3, 2, 2, 2, 2, 7, 2, 1, 2, 2, 3, 2, 3, 2, 2, 5, 3, 6, 3, 3, 2, 2, 2, 5, 2, 2, 3, 4, 3, 5, 2, 5, 4, 3, 2, 3, 6, 2, 2, 2, 6, 2, 2, 3, 2, 2, 3, 7
Offset: 1

Views

Author

Stefano Spezia, Jul 15 2021

Keywords

Examples

			a(12) = 4 since there are 4 proper divisors of A324297(12) = 576 ending with 6: 6, 16, 36 and 96.
		

Crossrefs

Cf. A017341, A032741, A324297, A324298, A337856, A346388 (ending with 5), A346392.

Programs

  • Mathematica
    b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+6]==0 && Mod[(10*n+6)/(10*k+6), 10]==6 && 10*n+6>Max[b], AppendTo[b, 10*n+6]]]]; (* A324297 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#,10]==6&)], -1]]]]; a

Formula

a(n) = A346392(A324297(n)).

A347255 Number of positive integers with n digits that are the product of two integers ending with 4.

Original entry on oeis.org

0, 3, 25, 281, 2941, 30596, 315385, 3231664, 32972224, 335346193, 3402373313, 34454358909, 348373701706, 3518101287286, 35491654274101
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A347253.

Crossrefs

Cf. A346509 (ending with 1), A346952 (ending with 3), A337855 (ending with 5), A337856 (ending with 6).

Programs

  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 24 2021

Formula

a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9)-a(11) from Michael S. Branicky, Aug 25 2021
a(12)-a(15) from Martin Ehrenstein, Sep 29 2021
Showing 1-10 of 27 results. Next