cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A010503 Decimal expansion of 1/sqrt(2).

Original entry on oeis.org

7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
Offset: 0

Views

Author

Keywords

Comments

The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
Positive zero of the Hermite polynomial of degree 2. - A.H.M. Smeets, Jun 02 2025

Examples

			0.7071067811865475...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).

Programs

  • Magma
    1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
  • Maple
    Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    N[ 1/Sqrt[2], 200]
    RealDigits[1/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
    

Formula

1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024

Extensions

More terms from Harry J. Smith, Jun 02 2009

A019875 Decimal expansion of sine of 66 degrees.

Original entry on oeis.org

9, 1, 3, 5, 4, 5, 4, 5, 7, 6, 4, 2, 6, 0, 0, 8, 9, 5, 5, 0, 2, 1, 2, 7, 5, 7, 1, 9, 8, 5, 3, 1, 7, 1, 7, 7, 9, 4, 0, 8, 1, 0, 4, 5, 9, 3, 7, 7, 4, 7, 4, 5, 4, 5, 0, 6, 0, 9, 9, 9, 7, 8, 8, 0, 6, 5, 1, 1, 4, 8, 8, 2, 1, 0, 2, 6, 3, 1, 2, 7, 1, 6, 8, 1, 7, 8, 4, 0, 0, 0, 8, 9, 3, 2, 9, 9, 9, 9, 4
Offset: 0

Views

Author

Keywords

Comments

A quartic number with denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.913545457...
		

Crossrefs

Programs

Formula

Equals cos(2*Pi/15) = 2*A019887^2 - 1 = 1 - 2*A019821^2. - R. J. Mathar, Jun 18 2006
Equals 2*A019842*A019866. - R. J. Mathar, Jan 17 2021
Largest of the 4 real-valued roots of 16*x^4-8*x^3-16*x^2+8*x+1=0. (Other A019851, -A019815, -A019887). - R. J. Mathar, Sep 04 2025

A019815 Decimal expansion of sine of 6 degrees.

Original entry on oeis.org

1, 0, 4, 5, 2, 8, 4, 6, 3, 2, 6, 7, 6, 5, 3, 4, 7, 1, 3, 9, 9, 8, 3, 4, 1, 5, 4, 8, 0, 2, 4, 9, 8, 1, 1, 9, 0, 8, 0, 6, 5, 5, 8, 6, 9, 4, 7, 4, 5, 9, 3, 1, 1, 3, 9, 9, 3, 2, 7, 5, 4, 7, 6, 7, 1, 2, 4, 8, 4, 6, 5, 0, 6, 9, 3, 1, 8, 0, 0, 4, 6, 8, 2, 8, 1, 8, 0, 3, 9, 8, 7, 9, 8, 6, 0, 4, 4, 2, 6
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 1/8 (-1 - sqrt(5) + sqrt(6*(5 - sqrt(5)))). - Artur Jasinski, Oct 28 2008

Examples

			sin(Pi/30) = 0.10452846...
		

Programs

Formula

Equals cos(7*Pi/15) = -cos(8*Pi/15) = 2F1(6/5,-1/5;1/2;3/4) / 2 = -2F1(13/10,-3/10;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals 2*A019812*A019896. - R. J. Mathar, Jan 17 2021
Smallest positive of the 4 real-valued roots of 16*x^4+8*x^3-16*x^2-8*x+1=0. (Other A019887, -A019875, -A019851) - R. J. Mathar, Aug 31 2025

A019893 Decimal expansion of sine of 84 degrees.

Original entry on oeis.org

9, 9, 4, 5, 2, 1, 8, 9, 5, 3, 6, 8, 2, 7, 3, 3, 3, 6, 9, 2, 2, 6, 9, 1, 9, 4, 4, 9, 8, 0, 5, 7, 0, 3, 8, 1, 5, 2, 0, 7, 9, 2, 0, 8, 8, 7, 0, 9, 3, 1, 9, 4, 2, 7, 3, 6, 6, 5, 5, 8, 8, 3, 3, 5, 7, 4, 3, 1, 6, 2, 5, 0, 6, 8, 6, 8, 9, 8, 3, 6, 2, 5, 7, 9, 3, 0, 6, 2, 2, 0, 3, 8, 3, 3, 6, 0, 9, 2, 9
Offset: 0

Views

Author

Keywords

Comments

Equals sin(7*Pi/15). - Wesley Ivan Hurt, Sep 01 2014
An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			0.9945218953682733369226919449805703815207920887093194273665588...
		

Programs

Formula

Equals cos(Pi/30) = 2F1(11/20,9/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals 2*A019851*A019857. - R. J. Mathar, Jan 17 2021
Root of 256*x^8 -448*x^6 +224*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
4*this^3 -3*this = A019881. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/20,1/20;1/2;3/4). - R. J. Mathar, Aug 31 2025

A019872 Decimal expansion of sine of 63 degrees.

Original entry on oeis.org

8, 9, 1, 0, 0, 6, 5, 2, 4, 1, 8, 8, 3, 6, 7, 8, 6, 2, 3, 5, 9, 7, 0, 9, 5, 7, 1, 4, 1, 3, 6, 2, 6, 3, 1, 2, 7, 7, 0, 5, 1, 8, 5, 1, 9, 0, 3, 6, 0, 8, 8, 7, 4, 5, 4, 0, 5, 5, 2, 2, 2, 8, 4, 5, 2, 2, 4, 9, 2, 2, 7, 4, 1, 7, 6, 1, 3, 5, 2, 2, 4, 3, 7, 7, 9, 3, 8, 5, 8, 2, 7, 3, 4, 8, 6, 1, 4, 7, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Programs

Formula

Equals A019851 * A019878 + A019830 * A019857 = A010527 * A019896 + A019812 * (1/2). - R. J. Mathar, Jan 27 2021
This^2 + A019836^2=1. - R. J. Mathar, Aug 31 2025
One of the 8 real-valued roots of 256*x^8-512*x^6+304*x^4-48*x^2+1=0. (Other A019890, A019836, A019818) - R. J. Mathar, Aug 31 2025

A019860 Decimal expansion of sine of 51 degrees.

Original entry on oeis.org

7, 7, 7, 1, 4, 5, 9, 6, 1, 4, 5, 6, 9, 7, 0, 8, 7, 9, 9, 7, 9, 9, 3, 7, 7, 4, 3, 6, 7, 2, 4, 0, 3, 8, 4, 9, 0, 9, 2, 0, 6, 5, 3, 7, 6, 4, 5, 1, 8, 0, 6, 0, 1, 6, 7, 9, 7, 0, 0, 8, 3, 3, 5, 0, 8, 1, 3, 9, 0, 7, 0, 4, 9, 3, 0, 3, 9, 8, 7, 3, 7, 0, 3, 1, 5, 4, 2, 1, 1, 0, 3, 9, 7, 5, 3, 7, 3, 6, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

A306603 a(n) = (2 cos(Pi/15))^n + (2 cos(7 Pi/15))^n + (2 cos(11 Pi/15))^n + (2 cos(13 Pi/15))^n.

Original entry on oeis.org

4, -1, 9, -1, 29, 4, 99, 34, 349, 179, 1254, 824, 4559, 3574, 16704, 15004, 61549, 61709, 227799, 250229, 846254, 1004149, 3153984, 3997399, 11788879, 15812504, 44178624, 62229509, 165946124, 243873904, 624650004, 952400599, 2355748909, 3708579599
Offset: 0

Views

Author

Greg Dresden, Feb 27 2019

Keywords

Comments

a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = -1, e_2 = -4, e_3 = -4 and e_4 = 1. The arguments are e_j(x_1, x_2, x_3, x_4), for j = 1..4, with the zeros {x_i}A187360,%20for%20n%20=%2015),%20appearing%20to%20the%20power%20n%20in%20the%20formula%20given%20above.%20-%20_Wolfdieter%20Lang">{i=1..4} of the minimal polynomial of 2*cos(Pi/15) (see A187360, for n = 15), appearing to the power n in the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A187360, A324602.

Programs

  • Mathematica
    Table[Sum[(2.0 Cos[k Pi/15])^n, {k, {1, 7, 11, 13}}] // Round, {n, 1, 30}]
    LinearRecurrence[{-1,4,4,-1},{4,-1,9,-1},40] (* Harvey P. Dale, Jun 02 2024 *)

Formula

G.f.: (4*x^3+8*x^2-3*x-4)/(-x^4+4*x^3+4*x^2-x-1). - Alois P. Heinz, Feb 27 2019
a(n) = -a(n-1) + 4*a(n-2) + 4*a(n-3) -a(n-4). - Greg Dresden, Feb 27 2019

A019858 Decimal expansion of sine of 49 degrees.

Original entry on oeis.org

7, 5, 4, 7, 0, 9, 5, 8, 0, 2, 2, 2, 7, 7, 1, 9, 9, 7, 9, 4, 2, 9, 8, 4, 2, 1, 9, 5, 6, 1, 0, 1, 5, 5, 5, 8, 0, 4, 8, 5, 3, 7, 9, 7, 4, 6, 4, 4, 8, 9, 7, 4, 3, 6, 0, 4, 1, 3, 2, 2, 6, 8, 8, 3, 4, 9, 6, 1, 8, 4, 0, 1, 7, 2, 8, 5, 9, 5, 3, 1, 6, 7, 5, 3, 0, 6, 4, 3, 8, 3, 0, 4, 6, 9, 2, 4, 7, 4, 0
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 48 and denominator 2. - Charles R Greathouse IV, Nov 05 2017

Programs

Formula

Equals A019851 * A019892 + A019816 * A019857. - R. J. Mathar, Jan 27 2021

A306610 a(n) = (2*cos(Pi/15))^(-n) + (2*cos(7*Pi/15))^(-n) + (2*cos(11*Pi/15))^(-n) + (2*cos(13*Pi/15))^(-n), for n >= 1.

Original entry on oeis.org

4, 24, 109, 524, 2504, 11979, 57299, 274084, 1311049, 6271254, 29997829, 143491199, 686373809, 3283190949, 15704770004, 75121978804, 359337430474, 1718849676159, 8221921677724, 39328626006254, 188124003629279, 899869747188249, 4304424455586134
Offset: 1

Views

Author

Greg Dresden, Feb 28 2019

Keywords

Comments

-a(n) is the coefficient of x in the minimal polynomial for (2*cos(Pi/15))^n, for n >= 1. The coefficients of -x^3 are A306603(n), and those of x^2 are A306611(n).
a(n) is obtained from the Girard-Waring formula for the sum of powers of N = 4 indeterminates (see A324602), with the elementary symmetric functions e_1 = 4, e_2 = -4, e_3 = -1 and e_4 = 1. The arguments are e_j(1/x_1, 1/x_2, 1/x_3, 1/x_4), for j = 1..4, with the zeros {x_i}{i=1..4} of the minimal polynomial of 2*cos(Pi/15), appearing under the negative powers of the formula given above. - _Wolfdieter Lang, May 08 2019

Crossrefs

Cf. A019887 (cos(Pi/15)), A019815 (cos(7*Pi/15)), A019851 (cos(11*Pi/15)), A019875 (cos(13*Pi/15)), A306603 (positive powers of these cosines), A306611, A324602.

Programs

  • Mathematica
    Table[Round[N[Sum[(2 Cos[k Pi/15])^(-n), {k,{1,7,11,13}}],50]],{n,1,30}]

Formula

a(n) = 4a(n-1) + 4a(n-2) - a(n-3) - a(n-4).
G.f.: x*(-4x^3 -3x^2 +8x +4)/(x^4 +x^3 -4x^2 -4x +1).
a(n) = round((2*cos(7*Pi/15))^(-n)) for n >= 3.

A019940 Decimal expansion of tangent of 42 degrees.

Original entry on oeis.org

9, 0, 0, 4, 0, 4, 0, 4, 4, 2, 9, 7, 8, 3, 9, 9, 4, 5, 1, 2, 0, 4, 7, 7, 2, 0, 3, 8, 8, 5, 3, 7, 1, 7, 0, 2, 0, 7, 6, 4, 6, 6, 2, 1, 1, 2, 9, 9, 4, 8, 5, 2, 8, 2, 4, 2, 7, 0, 7, 9, 0, 8, 3, 9, 2, 2, 4, 0, 1, 7, 1, 4, 2, 5, 2, 5, 0, 2, 5, 3, 1, 8, 6, 2, 6, 3, 1, 1, 5, 9, 8, 6, 6, 3, 3, 8, 2, 8, 3
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 48 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			0.900404044297839945120477203885371702076466211299485282427079...
		

Crossrefs

Cf. A019851 (sine of 42 degrees)

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(7*Pi(R)/30); // G. C. Greubel, Nov 25 2018
    
  • Mathematica
    RealDigits[Tan[42 Degree],10,120][[1]] (* Harvey P. Dale, Sep 05 2012 *)
    RealDigits[Tan[7*Pi/30], 10, 100][[1]] (* G. C. Greubel, Nov 25 2018 *)
  • PARI
    default(realprecision, 100); tan(7*Pi/30) \\ G. C. Greubel, Nov 25 2018
    
  • Sage
    numerical_approx(tan(7*pi/30), digits=100) # G. C. Greubel, Nov 25 2018

Formula

Equals sqrt(7 + 2*sqrt(5) - 2*sqrt(3*(5 + 2*sqrt(5)))). - G. C. Greubel, Nov 25 2018
Showing 1-10 of 11 results. Next