A369291
Array read by antidiagonals: T(n,k) = phi(k^n-1)/n, where phi is Euler's totient function (A000010), n >= 1, k >= 2.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 12, 8, 6, 2, 12, 20, 32, 22, 6, 6, 8, 56, 48, 120, 48, 18, 4, 18, 36, 216, 280, 288, 156, 16, 6, 16, 144, 160, 1240, 720, 1512, 320, 48, 4, 30, 96, 432, 1120, 5040, 5580, 4096, 1008, 60, 10, 16, 216, 640, 5400, 6048, 31992, 14976, 15552, 2640, 176
Offset: 1
Array begins:
n\k| 2 3 4 5 6 7 8 9 ...
---+---------------------------------------------------
1 | 1 1 2 2 4 2 6 4 ...
2 | 1 2 4 4 12 8 18 16 ...
3 | 2 4 12 20 56 36 144 96 ...
4 | 2 8 32 48 216 160 432 640 ...
5 | 6 22 120 280 1240 1120 5400 5280 ...
6 | 6 48 288 720 5040 6048 23328 27648 ...
7 | 18 156 1512 5580 31992 37856 254016 340704 ...
8 | 16 320 4096 14976 139968 192000 829440 1966080 ...
...
-
A369291[n_, k_] := EulerPhi[k^n - 1]/n;
Table[A369291[k, n-k+2], {n, 15}, {k, n}] (* Paolo Xausa, Jun 17 2024 *)
-
T(n,k) = eulerphi(k^n-1)/n
A295500
a(n) = phi(3^n-1), where phi is Euler's totient function (A000010).
Original entry on oeis.org
1, 4, 12, 32, 110, 288, 1092, 2560, 9072, 26400, 84700, 165888, 797160, 2384928, 6019200, 15728640, 64533700, 141087744, 580765248, 1246080000, 4823425152, 14758128000, 46070066188, 85996339200, 385087175000, 1270928131200, 3474144608256, 8810420097024
Offset: 1
phi(k^n-1):
A053287 (k=2), this sequence (k=3),
A295501 (k=4),
A295502 (k=5),
A366623 (k=6),
A366635 (k=7),
A366654 (k=8),
A366663 (k=9),
A295503 (k=10),
A366685 (k=11),
A366711 (k=12).
A192507
Number of conjugacy classes of primitive elements in GF(3^n) which have trace 0.
Original entry on oeis.org
0, 0, 1, 2, 7, 14, 52, 104, 333, 870, 2571, 4590, 20440, 56736, 133782, 327558, 1265391, 2612694, 10188836, 20769420, 76562106
Offset: 1
Cf.
A027385 (number of primitive polynomials of degree n over GF(3)).
-
p := 3;
a := function(n)
local q, k, cnt, x;
q:=p^n; k:=GF(p, n); cnt:=0;
for x in k do
if Trace(k, GF(p), x)=0*Z(p) and Order(x)=q-1 then
cnt := cnt+1;
fi;
od;
return cnt/n;
end;
for n in [1..16] do Print (a(n), ", "); od;
-
# much more efficient
p=3; # choose characteristic
for n in range(1,66):
F = GF(p^n, 'x')
g = F.multiplicative_generator() # generator
vt = vector(ZZ,p) # stats: trace
m = p^n - 1 # size of multiplicative group
# Compute all irreducible polynomials via Lyndon words:
for w in LyndonWords(p,n): # digits of Lyndon words range form 1,..,p
e = sum( (w[j]-1) * p^j for j in range(0,n) )
if gcd(m, e) == 1: # primitive elements only
f = g^e
t = f.trace().lift(); # trace (over ZZ)
vt[t] += 1
print(vt[0]) # choose index 0,1,..,p-1 for different traces
# Joerg Arndt, Oct 03 2012
A295496
a(n) = phi(6^n-1)/n, where phi is Euler's totient function (A000010).
Original entry on oeis.org
4, 12, 56, 216, 1240, 5040, 31992, 139968, 828576, 3720000, 25238048, 104509440, 803499840, 3687014016, 24373440000, 110630707200, 790546192128, 3463116249600, 25522921047520, 108957312000000, 816244048599840, 3924124012353600, 26682733370563200
Offset: 1
-
Array[EulerPhi[6^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
-
{a(n) = eulerphi(6^n-1)/n}
A295497
a(n) = phi(10^n-1)/n, where phi is Euler's totient function (A000010).
Original entry on oeis.org
6, 30, 216, 1500, 12960, 77760, 948192, 7344000, 72071856, 589032000, 6060314304, 38491200000, 496775732544, 4309959326400, 40676940288000, 345599944704000, 3921566733817776, 24555273410096640, 350877192982456140, 2915072245440000000
Offset: 1
-
Array[EulerPhi[10^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
-
{a(n) = eulerphi(10^n-1)/n}
A319166
Number of primitive polynomials of degree n over GF(11).
Original entry on oeis.org
4, 16, 144, 960, 12880, 62208, 1087632, 7027200, 85098816, 691398400, 10374307328, 49985372160, 1061265441600, 7064952935040, 90426613939200, 708867057254400, 11892871258806912, 65078340559220736, 1287559798913990448, 8819554320783360000, 111715065087913437696
Offset: 1
-
Array[EulerPhi[11^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
-
{a(n) = eulerphi(11^n-1)/n}
A158502
Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360
Offset: 1
The array starts in row n=1 with columns k>=1 as
1, 1, 2, 2, 6, 6, 18, 16, 48, 60, A011260
1, 2, 4, 8, 22, 48, 156, 320, 1008, 2640, A027385
2, 4, 20, 48, 280, 720, 5580, 14976, 99360, 291200, A027741
2, 8, 36, 160, 1120, 6048, 37856, 192000, 1376352, 8512000, A027743
4,16, 144, 960, 12880, 62208,1087632,7027200,85098816,691398400, A319166
4,24, 240, 1536, 24752, 224640,2988024,21934080
-
A := proc(n,k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if;end proc:
-
t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *)
A163303
a(n) = n^3 + 73*n^2 + n + 67.
Original entry on oeis.org
67, 142, 369, 754, 1303, 2022, 2917, 3994, 5259, 6718, 8377, 10242, 12319, 14614, 17133, 19882, 22867, 26094, 29569, 33298, 37287, 41542, 46069, 50874, 55963, 61342, 67017, 72994, 79279, 85878, 92797, 100042, 107619, 115534, 123793, 132402
Offset: 0
- Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp. 78-84
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tom Hansen, G. L. Mullen, Primitive Polynomials over finite fields, Math. Comp. 59 (200) (1992) 639
- Sean E. O'Connor, Computing primitive Polynomials - Theory and Algorithm
- Eric Weisstein, MathWorld: Primitive Polynomial
- Wikipedia, Primitive Polynomial
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[n^3+73*n^2+n+67: n in [0..40]];
-
I:=[67,142,369,754]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
-
Table[n^3 + 73 n^2 + n + 67, {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {67, 142, 369, 754}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
-
first(m)=vector(m,i,i--;i^3 + 73*i^2 + i + 67) \\ Anders Hellström, Sep 13 2015
A163304
a(n) = n^4 + 984*n^3 + 902*n^2 + 394*n + 858.
Original entry on oeis.org
858, 3139, 13142, 36807, 80098, 149003, 249534, 387727, 569642, 801363, 1088998, 1438679, 1856562, 2348827, 2921678, 3581343, 4334074, 5186147, 6143862, 7213543, 8401538, 9714219, 11157982, 12739247, 14464458, 16340083, 18372614, 20568567, 22934482, 25476923
Offset: 0
- Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp.78-84
A319183
a(n) = phi(n^n - 1)/n where phi is A000010.
Original entry on oeis.org
1, 4, 32, 280, 5040, 37856, 829440, 15676416, 589032000, 10374307328, 388566097920, 7619466454080, 390751784579520, 11138729990400000, 575561351791902720, 24328359845627701248, 1640651748984970444800, 34709116765970413844280, 2459108342476800000000000
Offset: 2
-
Table[EulerPhi[n^n-1]/n,{n,20}] (* Harvey P. Dale, Aug 04 2020 *)
-
{a(n) = eulerphi(n^n-1)/n}
Showing 1-10 of 10 results.
Comments