cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A053057 Squares whose digit sum is also a square.

Original entry on oeis.org

0, 1, 4, 9, 36, 81, 100, 121, 144, 169, 196, 225, 324, 400, 441, 484, 529, 900, 961, 1521, 1681, 2025, 2304, 2601, 3364, 3481, 3600, 4489, 4624, 5776, 5929, 7225, 7396, 8100, 8836, 9025, 10000, 10201, 10404, 10609, 10816, 11025, 12100, 12321, 12544, 12769
Offset: 1

Views

Author

Felice Russo, Feb 25 2000

Keywords

Comments

The numbers 81, 100, 121, 144, 169, 196, 225 are seven consecutive squares belonging to this sequence. The next set of seven consecutive squares whose digit sum is also a square is {9999^2, 10000^2, 10001^2, 10002^2, 10003^2, 10004^2, 10005^2}. (See Crux Mathematicorum link.) - Bernard Schott, May 24 2017
The first set of 8 consecutive squares begin at 46045846^2. This was already known in 2016, see MathStackExchange link. - Michel Marcus, May 25 2017
The first run of 9 consecutive squares starts at 302260461719025^2. - Giovanni Resta, Jun 08 2017

Examples

			144 is a term: 144 = 12^2 and 1 + 4 + 4 = 9 = 3^2. - _Bernard Schott_, May 24 2017
		

References

  • Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press, 2000.

Crossrefs

Subsequence of A000290.

Programs

  • Magma
    [n^2: n in [0..120] | IsSquare(&+Intseq(n^2))];  // Bruno Berselli, May 26 2011
    
  • Mathematica
    Select[Range[0,115]^2, IntegerQ[Sqrt[DigitSum[#]]]&] (* Stefano Spezia, Mar 07 2024 *)
  • PARI
    lista(nn) = for (n=1, nn, if (issquare(sumdigits(n^2)), print1(n^2, ", "));); \\ Michel Marcus, May 25 2017

Extensions

More terms from James Sellers, Feb 28 2000

A107288 Primes whose digit sum is a square.

Original entry on oeis.org

13, 31, 79, 97, 103, 211, 277, 349, 367, 439, 457, 547, 619, 673, 691, 709, 727, 853, 907, 997, 1021, 1069, 1087, 1201, 1249, 1429, 1447, 1483, 1609, 1627, 1663, 1699, 1753, 1789, 1861, 1879, 1933, 1951, 1987, 2011, 2239, 2293, 2347, 2383, 2437, 2473, 2617, 2671
Offset: 1

Views

Author

Zak Seidov, May 20 2005

Keywords

Comments

Primes in A028839. [K. D. Bajpai, Jul 08 2014]
From Altug Alkan and Waldemar Puszkarz, Apr 10 2016: All terms are congruent to 1 mod 6. Proof: For n > 2, prime(n) is 1 or 5 mod 6. If p is 5 mod 6, then it is of the form 3*k-1. For numbers of this form, the sum of digits is also of this form, as can be seen through the kind of reasoning used in proving that numbers divisible by 3 have the sum of digits divisible by 3. However, 3*k-1 can never be a square, meaning n^2+1 is never divisible by 3: any n is equal to one of 0, 1, 2 mod 3, thus by the rules of modular arithmetic, n^2+1 is 1 or 2 mod 3, never 0. Hence p must be congruent to 1 mod 6.

Examples

			79 is in the sequence because it is prime. Also, (7 + 9) = 16 = 4^2.
997 is in the sequence because it is prime. Also, (9 + 9 + 7) = 25 = 5^2.
		

Crossrefs

Cf. A244863 (Semiprimes whose digit sum is square).

Programs

  • Maple
    with(numtheory): A107288:= proc() local a; a:=add(i,i = convert((n),base,10))(n); if isprime(n) and root(a,2)=floor(root(a,2)) then RETURN (n); fi; end: seq(A107288 (), n=1..5000); # K. D. Bajpai, Jul 08 2014
  • Mathematica
    bb = {}; Do[If[IntegerQ[Sqrt[Apply[Plus, IntegerDigits[p = Prime[n]]]]], bb = Append[bb, p]], {n, 500}]; bb
  • PARI
    lista(nn) = {forprime(p=2, nn, if (issquare(sumdigits(p)), print1(p, ", ")););} \\ Michel Marcus, Apr 09 2016

Extensions

Terms a(47) and a(48) added by K. D. Bajpai, Jul 08 2014

A001102 Numbers k such that k / (sum of digits of k) is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 81, 100, 144, 150, 192, 200, 225, 288, 300, 320, 324, 375, 400, 441, 500, 512, 600, 640, 648, 700, 704, 735, 800, 832, 882, 900, 960, 1014, 1088, 1200, 1452, 1458, 1521, 1815, 2023
Offset: 1

Views

Author

N. J. A. Sloane, Bill Moran (moran1(AT)llnl.gov)

Keywords

Comments

The sequence is infinite since if m = 10^(2*j) then m / digitsum(m) = m. - Marius A. Burtea, Dec 21 2018

Crossrefs

Subsequence of Niven numbers (A005349); cf. A028839.

Programs

  • Haskell
    a001102 n = a001102_list !! (n-1)
    a001102_list =
       filter (\x -> a010052 (x `div` (a007953 x)) == 1) a005349_list
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Magma
    [n: n in [1..1000] | IsIntegral(n/(&+Intseq(n))) and IsSquare(n/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
  • Mathematica
    Select[Range[2200],IntegerQ[Sqrt[#/Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Feb 25 2012 *)

Formula

a(n) mod A007953(a(n)) = 0 and A010052(a(n) / A007953(a(n))) = 1. - Reinhard Zumkeller, Aug 17 2011

A050626 Product of digits of n is a nonzero square.

Original entry on oeis.org

1, 4, 9, 11, 14, 19, 22, 28, 33, 41, 44, 49, 55, 66, 77, 82, 88, 91, 94, 99, 111, 114, 119, 122, 128, 133, 141, 144, 149, 155, 166, 177, 182, 188, 191, 194, 199, 212, 218, 221, 224, 229, 236, 242, 248, 263, 281, 284, 289, 292, 298, 313, 326, 331, 334, 339, 343
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n: n in [1..350] | s gt 0 and IsSquare(s) where s is &*Intseq(n,10) ];  // Bruno Berselli, May 26 2011
    
  • Mathematica
    Select[Range[500],DigitCount[#,10,0]==0&&IntegerQ[Sqrt[Times@@ IntegerDigits[ #]]]&] (* Harvey P. Dale, Jun 09 2020 *)
  • PARI
    is(n)=my(v=digits(n),pr=prod(i=1,#v,v[i]));pr&&issquare(pr) \\ Charles R Greathouse IV, May 19 2013

A061267 Squares whose sum of digits as well as product of digits is a nonzero square.

Original entry on oeis.org

1, 4, 9, 144, 441, 14884, 44944, 48841, 132496, 214369, 268324, 288369, 294849, 346921, 436921, 511225, 617796, 938961, 1234321, 1336336, 1833316, 2325625, 2356225, 2585664, 2614689, 2778889, 2862864, 3323329, 3767481, 4691556
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2001

Keywords

Comments

The squares of 969, 9669, 96669, 966669, ... with n 6s belong to this sequence if n = 4*m^2 - 3. The sum of the digits of this number is 36*m^2 and the product of the digits is 108^2 * 20^k, where k = 4xm^2.

Examples

			14884 = 122^2 is a member of this sequence as 1+4+8+8+4 = 25 = 5^2 and 1*4*8*8*4 = 1024 = 32^2.
		

References

  • Amarnath Murthy, Infinitely many common members of Smarandache Additive as well as Multiplicative Square sequence, (to be published in the Smarandache Notions Journal)
  • Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press 2000

Crossrefs

Intersection of A050626, A028839, and A000290.
A061869 allows values with zero product.

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; iQ[n_]:=IntegerQ[Sqrt[n]]; Select[Range[2500]^2,iQ[Plus@@(x=d[#])] && iQ[Times@@x] && FreeQ[x,0] &] (* Jayanta Basu, May 19 2013 *)
  • PARI
    is(n)=my(v=digits(n),pr=prod(i=1,#v,v[i])); pr && issquare(pr) && issquare(n) && issquare(sumdigits(n)) \\ Charles R Greathouse IV, May 19 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001

A197039 Numbers such that sum of the cube of decimal digits is a perfect square.

Original entry on oeis.org

1, 4, 9, 10, 12, 21, 22, 40, 48, 84, 88, 90, 100, 102, 120, 123, 126, 132, 162, 168, 186, 201, 202, 210, 213, 216, 220, 231, 261, 312, 321, 333, 400, 408, 480, 612, 618, 621, 681, 804, 808, 816, 840, 861, 880, 900, 1000, 1002, 1020, 1023, 1026, 1032, 1062
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2011

Keywords

Examples

			261 is in the sequence because 2^3+6^3+1^3 = 15^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],IntegerQ[Sqrt[Apply[Plus,IntegerDigits[#]^3]]]&]

A236748 Positive integers k such that k^2 divided by the digital sum of k is a square.

Original entry on oeis.org

1, 4, 9, 10, 18, 22, 27, 36, 40, 45, 54, 63, 72, 81, 88, 90, 100, 108, 112, 117, 126, 130, 135, 144, 153, 162, 171, 180, 196, 202, 207, 216, 220, 225, 234, 243, 252, 261, 268, 270, 306, 310, 315, 324, 333, 342, 351, 360, 376, 400, 405, 414, 423, 432, 441
Offset: 1

Views

Author

Colin Barker, Jan 30 2014

Keywords

Comments

Subsequence of A028839 (sum of digits of n is a square). - Jon Perry and Michel Marcus, Oct 30 2014
A028839 is the sequence of positive integers such that n^2 divided by the sum of the digits is a rational square. For this sequence, it is required to be an integer square. - Franklin T. Adams-Watters, Oct 30 2014
The sequence is infinite since if m = 10^j then m^2 / digitsum(m) = m^2. - Marius A. Burtea, Dec 21 2018

Examples

			153 is in the sequence because the digital sum of 153 is 9, and 153^2/9 = 2601 = 51^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1500] | IsIntegral((n^2)/(&+Intseq(n))) and IsSquare((n^2)/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
  • Maple
    filter:= n -> issqr(n^2/convert(convert(n,base,10),`+`)):
    select(filter, [$1..10000]); # Robert Israel, Oct 30 2014
  • Mathematica
    Select[Range[500],IntegerQ[Sqrt[#^2/Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Nov 19 2014 *)
  • PARI
    s=[]; for(n=1, 600, d=sumdigits(n); if(n^2%d==0 && issquare(n^2\d), s=concat(s, n))); s
    

A028837 Iterated sum of digits of n is a square.

Original entry on oeis.org

1, 4, 9, 10, 13, 18, 19, 22, 27, 28, 31, 36, 37, 40, 45, 46, 49, 54, 55, 58, 63, 64, 67, 72, 73, 76, 81, 82, 85, 90, 91, 94, 99, 100, 103, 108, 109, 112, 117, 118, 121, 126, 127, 130, 135, 136, 139, 144, 145, 148, 153, 154, 157, 162, 163, 166, 171, 172, 175, 180
Offset: 1

Views

Author

Keywords

Examples

			E.g. 58 -> 5+8 = 13 -> 1+3 = 4 is a square.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,4,9,10},60] (* Harvey P. Dale, Jan 26 2015 *)

Formula

a(n) = a(n-3)+9. If n is a multiple of 3 then a(n) = 3n, otherwise a(n) = 3n-2. Numbers of form {0, 1, 4} modulo 9 - Henry Bottomley, Jun 30 2000
a(1)=1, a(2)=4, a(3)=9, a(4)=10, a(n)=a(n-1)+a(n-3)-a(n-4). - Harvey P. Dale, Jan 26 2015
G.f.: x*(1+3*x+5*x^2) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
E.g.f.: (exp(x)*(9*x - 4) + 4*exp(-x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Mar 07 2024

Extensions

More terms from Patrick De Geest, Jun 15 1999

A225535 Numbers whose cubed digits sum to a cube, and have more than one nonzero digit.

Original entry on oeis.org

168, 186, 345, 354, 435, 453, 534, 543, 618, 681, 816, 861, 1068, 1086, 1156, 1165, 1516, 1561, 1608, 1615, 1651, 1680, 1806, 1860, 3045, 3054, 3405, 3450, 3504, 3540, 4035, 4053, 4305, 4350, 4503, 4530, 5034, 5043, 5116, 5161, 5304, 5340, 5403, 5430, 5611
Offset: 1

Views

Author

Keywords

Examples

			5^3 + 6^3 + 1^3 + 1^3 = 343, which is 7^3.
		

Crossrefs

Cf. A225534 (cubed digits sum to a prime), A197039 (square), A046459. A055012.
Cf. A165330 (cube cycle), A046197 (cubic fixed points), A000578 (cubes).
Cf. A052034 (squared digits sum to a prime), A028839, A117685.
Cf. A164882 (n such that sum of the cubes of the digits of n^3 is perfect cube). - Zak Seidov, May 21 2013

Programs

  • Mathematica
    fQ[n_] := Module[{d = IntegerDigits[n]}, Count[d, 0] + 1 < Length[d] && IntegerQ[Total[d^3]^(1/3)]]; Select[Range[5611], fQ] (* T. D. Noe, May 19 2013 *)
  • R
    y=rep(0,10000); len=0; x=0; library(gmp);
    digcubesum<-function(x) sum(as.numeric(unlist(strsplit(as.character(as.bigz(x)),split="")))^3);
    iscube<-function(x) ifelse(as.bigz(x)<2,T,all(table(as.numeric(factorize(x)))%%3==0));
    nonzerodig<-function(x) sum(strsplit(as.character(x),split="")[[1]]!="0");
    which(sapply(1:6000,function(x) nonzerodig(x)>1 & iscube(digcubesum(x))))

A244863 Semiprimes whose digit sum is a perfect square.

Original entry on oeis.org

4, 9, 10, 22, 121, 169, 178, 187, 202, 259, 295, 301, 358, 394, 466, 493, 529, 538, 565, 583, 655, 718, 745, 763, 781, 799, 817, 835, 862, 871, 889, 898, 934, 943, 961, 979, 1003, 1111, 1159, 1177, 1186, 1195, 1267, 1285, 1294, 1339, 1357, 1366, 1393, 1438, 1465
Offset: 1

Views

Author

K. D. Bajpai, Jul 07 2014

Keywords

Comments

Subsequence of A028839.

Examples

			178 is in the sequence because 178 = 2*89 (semiprime) and 1+7+8 = 16 (square).
187 is in the sequence because 187 = 11*17 (semiprime) and 1+8+7 = 16 (square).
		

Crossrefs

Cf. A107288 (Primes whose digit sum is square).

Programs

  • Maple
    select(n -> numtheory:-bigomega(n)=2 and issqr(convert(convert(n,base,10),`+`)),
    [$1..3000]); # Robert Israel, Jul 09 2014
  • Mathematica
    Select[Range[3000], PrimeOmega[#] == 2 && IntegerQ[Sqrt[Apply [Plus, IntegerDigits[#]]]] &]
Showing 1-10 of 22 results. Next