cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A277504 Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Oct 18 2016

Keywords

Comments

From Petros Hadjicostas, Jul 07 2018: (Start)
Column k of this array is the "BIK" (reversible, indistinct, unlabeled) transform of k,0,0,0,....
Consider the input sequence (c_k(n): n >= 1) with g.f. C_k(x) = Sum_{n>=1} c_k(n)*x^n. Let a_k(n) = BIK(c_k(n): n >= 1) be the output sequence under Bower's BIK transform. It can proved that the g.f. of BIK(c_k(n): n >= 1) is A_k(x) = (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))). (See the comments for sequence A001224.)
For column k of this two-dimensional array, the input sequence is defined by c_k(1) = k and c_k(n) = 0 for n >= 1. Thus, C_k(x) = k*x, and hence the g.f. of column k is (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))) = (1/2)*(k*x/(1-k*x) + (k*x^2 + k*x)/(1-k*x^2)) = (2 + (1-k)*x - 2*k*x^2)*k*x/(2*(1-k*x^2)*(1-k*x)).
Using the first form the g.f. above and the expansion 1/(1-y) = 1 + y + y^2 + ..., we can easily prove J.-F. Alcover's formula T(n,k) = (k^n + k^((n + mod(n,2))/2))/2.
(End)

Examples

			Array begins with T(0,0):
1 1   1     1      1       1        1         1         1          1 ...
0 1   2     3      4       5        6         7         8          9 ...
0 1   3     6     10      15       21        28        36         45 ...
0 1   6    18     40      75      126       196       288        405 ...
0 1  10    45    136     325      666      1225      2080       3321 ...
0 1  20   135    544    1625     3996      8575     16640      29889 ...
0 1  36   378   2080    7875    23436     58996    131328     266085 ...
0 1  72  1134   8320   39375   140616    412972   1050624    2394765 ...
0 1 136  3321  32896  195625   840456   2883601   8390656   21526641 ...
0 1 272  9963 131584  978125  5042736  20185207  67125248  193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
		

References

Crossrefs

Columns 0-6 are A000007, A000012, A005418(n+1), A032120, A032121, A032122, A056308.
Rows 0-20 are A000012, A001477, A000217 (triangular numbers), A002411 (pentagonal pyramidal numbers), A037270, A168178, A071232, A168194, A071231, A168372, A071236, A168627, A071235, A168663, A168664, A170779, A170780, A170790, A170791, A170801, A170802.
Main diagonal is A275549.
Transpose is A284979.
Cf. A003992 (oriented), A293500 (chiral), A321391 (achiral).

Programs

  • Magma
    [[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
  • Mathematica
    Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
    
  • PARI
    T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
    

Formula

T(n,k) = [n==0] + [n>0] * (k^n + k^ceiling(n/2)) / 2. [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
G.f. for column k: (1 - binomial(k+1,2)*x^2) / ((1-k*x)*(1-k*x^2)). - Petros Hadjicostas, Jul 07 2018 [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
From Robert A. Russell, Nov 13 2018: (Start)
T(n,k) = (A003992(k,n) + A321391(n,k)) / 2.
T(n,k) = A003992(k,n) - A293500(n,k) = A293500(n,k) + A321391(n,k).
G.f. for row n: (Sum_{j=0..n} S2(n,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=0..ceiling(n/2)} S2(ceiling(n/2),j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f. for row n>0: x*Sum_{k=0..n-1} A145882(n,k) * x^k / (1-x)^(n+1).
E.g.f. for row n: (Sum_{k=0..n} S2(n,k)*x^k + Sum_{k=0..ceiling(n/2)} S2(ceiling(n/2),k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
T(0,k) = 1; T(1,k) = k; T(2,k) = binomial(k+1,2); for n>2, T(n,k) = k*(T(n-3,k)+T(n-2,k)-k*T(n-1,k)).
For k>n, T(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * T(n,k-j). (End)

Extensions

Array transposed for greater consistency by Andrew Howroyd, Apr 04 2017
Origin changed to T(0,0) by Robert A. Russell, Nov 13 2018

A056449 a(n) = 3^floor((n+1)/2).

Original entry on oeis.org

1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0

Views

Author

Keywords

Comments

One followed by powers of 3 with positive exponent, repeated. - Omar E. Pol, Jul 27 2009
Number of achiral rows of n colors using up to three colors. E.g., for a(3) = 9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC. - Robert A. Russell, Nov 07 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=3 of A321391.
Essentially the same as A108411 and A162436.
Cf. A000244 (oriented), A032120 (unoriented), A032086(n>1) (chiral).

Programs

  • Magma
    [3^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    Riffle[3^Range[0, 20], 3^Range[20]] (* Harvey P. Dale, Jan 21 2015 *)
    Table[3^Ceiling[n/2], {n,0,40}] (* or *)
    LinearRecurrence[{0, 3}, {1, 3}, 40] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    a(n)=3^floor((n+1)/2); \\ Joerg Arndt, Apr 23 2013
    
  • Python
    def A056449(n): return 3**(n+1>>1) # Chai Wah Wu, Oct 28 2024

Formula

G.f.: (1 + 3*x) / (1 - 3*x^2). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n) = k^ceiling(n/2), where k = 3 is the number of possible colors. - Robert A. Russell, Nov 07 2018
a(n) = C(3,0)*A000007(n) + C(3,1)*A057427(n) + C(3,2)*A056453(n) + C(3,3)*A056454(n). - Robert A. Russell, Nov 08 2018
E.g.f.: cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x). - Stefano Spezia, Dec 31 2022

Extensions

Edited by N. J. A. Sloane at the suggestion of Klaus Brockhaus, Jul 03 2009
a(0)=1 prepended by Robert A. Russell, Nov 07 2018

A032086 Number of reversible strings with n beads of 3 colors. If more than 1 bead, not palindromic.

Original entry on oeis.org

3, 3, 9, 36, 108, 351, 1053, 3240, 9720, 29403, 88209, 265356, 796068, 2390391, 7171173, 21520080, 64560240, 193700403, 581101209, 1743362676, 5230088028, 15690441231, 47071323693, 141214502520, 423643507560
Offset: 1

Views

Author

Keywords

Crossrefs

Column 3 of A293500 for n>1.
Cf. A032120.

Programs

  • Mathematica
    Join[{3}, LinearRecurrence[{3, 3, -9}, {3, 9, 36}, 24]] (* Jean-François Alcover, Oct 11 2017 *)
  • PARI
    a(n) = if(n<2, [3][n], (3^n - 3^(ceil(n/2)))/2); \\ Andrew Howroyd, Oct 10 2017

Formula

"BHK" (reversible, identity, unlabeled) transform of 3, 0, 0, 0, ...
Conjectures from Colin Barker, Apr 02 2012: (Start)
a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3) for n > 4.
G.f.: 3*x*(1 - 2*x - 3*x^2 + 9*x^3)/((1 - 3*x)*(1 - 3*x^2)).
(End)
Conjectures from Colin Barker, Mar 09 2017: (Start)
a(n) = (2*3^n - 2*3^(n/2)) / 4 for n > 2 and even.
a(n) = (2*3^n - 2*3^((n+1)/2)) / 4 for n > 2 and odd.
(End)
The above conjectures are true: The second set follows from the definition and the first set can be derived from that. - Andrew Howroyd, Oct 10 2017
a(n) = (3^n - 3^(ceiling(n/2))) / 2 = (A000244(n) - A056449(n)) / 2 for n>1. - Robert A. Russell and Danny Rorabaugh, Jun 22 2018

A056310 Number of reversible strings with n beads using exactly three different colors.

Original entry on oeis.org

0, 0, 3, 18, 78, 273, 921, 2916, 9150, 28065, 85773, 259848, 785778, 2367813, 7128201, 21427956, 64382550, 193326105, 580372293, 1741847328, 5227116378, 15684323853, 47059266081, 141189861996
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=3, the three rows are ABC, ACB, and BAC, being respectively equivalent to CBA, BCA, and CAB, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A305621.
Equals (A001117 + A056454) / 2 = A001117 - A305623 = A305623 + A056454.

Programs

  • Maple
    seq(coeff(series(-3*x^3*(12*x^4-5*x^3-4*x^2+1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)),x,n+1), x, n), n = 1..25); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    k=3; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
    LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 3, 18, 78, 273, 921}, 40] (* Vincenzo Librandi, Sep 27 2018 *)

Formula

a(n) = A032120(n) - 3*A005418(n+1) + 3.
G.f.: -3*x^3*(12*x^4 - 5*x^3 - 4*x^2 + 1)/((x - 1)*(2*x - 1)*(3*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)). [Colin Barker, Jul 07 2012]

A056311 Number of reversible strings with n beads using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 12, 120, 780, 4212, 20424, 93360, 409380, 1749780, 7338792, 30394560, 124705140, 508291812, 2061607224, 8332140720, 33585777060, 135116412660, 542785800072, 2178110589600, 8733345234900
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=4, the 12 rows are 12 permutations of ABCD that do not include any mutual reversals.  Each of the 12 chiral pairs, such as ABCD-DCBA, is then counted just once. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A032121.
Column 4 of A305621.
Equals (A000919 + A056455) / 2 = A000919 - A305624 = A305624 + A056455.

Programs

  • Mathematica
    k=4; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
    CoefficientList[Series[12 x^3 (3 x + 1) (8 x^4 - 3 x^3 - 2 x^2 - x + 1) / ((x - 1) (4 x - 1) (3 x - 1) (2 x + 1) (2 x - 1) (3 x^2 - 1) (2 x^2 - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 26 2018 *)

Formula

Equals A032121(n) - 4*A032120(n) + 6*A005418(n+1) - 4.
G.f.: 12*x^4*(3*x+1)*(8*x^4-3*x^3-2*x^2-x+1)/ ((x-1) * (4*x-1) * (3*x-1) * (2*x+1) * (2*x -1) * (3*x^2-1) * (2*x^2-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=4 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018

A056312 Number of reversible strings with n beads using exactly five different colors.

Original entry on oeis.org

0, 0, 0, 0, 60, 900, 8400, 63000, 417120, 2551560, 14804700, 82764900, 450518460, 2404510500, 12646078200, 65771496000, 339165516120, 1737486149760, 8855359634100, 44952367981500, 227475768907860, 1148269329527100, 5785013373810000, 29100047092479000
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=5, the 60 rows are 60 permutations of ABCDE that do not include any mutual reversals.  Each of the 60 chiral pairs, such as ABCDE-EDCBA, is then counted just once.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A305621.
Equals (A001118 + A056456) / 2 = A001118 - A305625 = A305625 + A056456.

Programs

  • Magma
    [60*(StirlingSecond(n, 5)+StirlingSecond(Ceiling(n/2), 5)): n in [1..30]]; // Vincenzo Librandi, Sep 30 2018
  • Mathematica
    k=5; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,30}] (* Robert A. Russell, Nov 25 2017 *) adapted
    CoefficientList[Series[-60*x^4*(120*x^7 - 17*x^6 - 50*x^5 - 32*x^4 + 20*x^3 + 10*x^2 - 2*x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)), {x, 0, 30}], x] (* Stefano Spezia, Sep 29 2018 *)
  • PARI
    a(n) = 60*(stirling(n, 5, 2) + stirling(ceil(n/2), 5, 2)); \\ Altug Alkan, Sep 27 2018
    

Formula

a(n) = A032122(n) - 5*A032121(n) + 10*A032120(n) - 10*A005418(n+1) + 5.
G.f.: -60*x^5*(120*x^7 - 17*x^6 - 50*x^5 - 32*x^4 + 20*x^3 + 10*x^2 - 2*x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)). [Colin Barker, Sep 03 2012]
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=5 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018

A056313 Number of reversible strings with n beads using exactly six different colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 360, 7560, 95760, 952560, 8217720, 64615680, 476515080, 3355679880, 22837101840, 151449674040, 984573656640, 6302070915840, 39847411326600, 249509384858160, 1550188410555960, 9570844671224760
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=6, the 360 rows are 360 permutations of ABCDEF that do not include any mutual reversals.  Each of the 360 chiral pairs, such as ABCDEF-FEDCBA, is then counted just once. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A305621.
Equals (A000920 + A056457) / 2 = A000920 - A305626 = A305626 + A056457.

Programs

  • Mathematica
    k=6; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
  • PARI
    a(n) = my(k=6); k!/2*(stirling(n, k, 2) + stirling(ceil(n/2), k, 2)); \\ Altug Alkan, Sep 27 2018

Formula

a(n) = A056308(n) - 6*A032122(n) + 15*A032121(n) - 20*A032120(n) + 15*A005418(n+1) - 6.
G.f.: 360*x^6*(8*x^2 - x - 1)*(90*x^7 - 9*x^6 - 29*x^5 - 34*x^4 + 15*x^3 + 9*x^2 - x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)*(6*x^2 - 1)). - Colin Barker, Sep 03 2012
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=6 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018

A056314 Number of primitive (aperiodic) reversible strings with n beads using a maximum of three different colors.

Original entry on oeis.org

3, 3, 15, 39, 132, 357, 1131, 3276, 9945, 29508, 88935, 265668, 798252, 2391441, 7177584, 21523320, 64579920, 193709763, 581160255, 1743392040, 5230264026, 15690529437, 47071855131, 141214764600
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A284871.
Cf. A045625.

Formula

Sum mu(d)*A032120(n/d) where d|n.

A332862 Array read by antidiagonals: T(m,n) = number of placements of zero or more dominoes on the m X n grid where no two empty squares are horizontally adjacent.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 2, 11, 9, 5, 3, 25, 48, 25, 8, 4, 61, 172, 227, 64, 13, 5, 146, 731, 1427, 1054, 169, 21, 7, 351, 2976, 10388, 11134, 4921, 441, 34, 9, 844, 12039, 72751, 140555, 88733, 22944, 1156, 55, 12, 2028, 49401, 510779, 1693116, 1932067, 701926, 107017, 3025, 89
Offset: 1

Views

Author

Neil A. McKay, Feb 27 2020

Keywords

Comments

By symmetry this is the same as the number of placements of zero or more dominoes on the n X m grid where no two empty squares are vertically adjacent.
The number of positions of m X n Domineering where horizontal (Right) has no moves, also called Right ends. Domineering is a game in which players take turns placing dominoes on a grid, one player placing vertically and the other horizontally until the player to place cannot place a domino.
All rows and columns are linear recurrences with constant coefficients. An upper bound on the order of the recurrence for columns is A005418(n+1), which is the number of binary words of length n up to reversal. An upper bound on the order of the recurrence for rows is A032120(m). This upper bound is exact for at least 1 <= m <= 6. - Andrew Howroyd, Feb 28 2020

Examples

			Table starts:
  ===================================================================
  m\n|  1    2      3       4         5           6             7
  ---|---------------------------------------------------------------
  1  |  1    1      2       2         3           4             5 ...
  2  |  2    4     11      25        61         146           351 ...
  3  |  3    9     48     172       731        2976         12039 ...
  4  |  5   25    227    1427     10388       72751        510779 ...
  5  |  8   64   1054   11134    140555     1693116      20414525 ...
  6  | 13  169   4921   88733   1932067    40008789     831347033 ...
  7  | 21  441  22944  701926  26425981   941088936   33656587715 ...
  8  | 34 1156 107017 5567467 362036629 22168654178 1365206879940 ...
  ...
		

Crossrefs

Columns 1..3 are A000045, A007598, A054894.
Rows 1..2 are A000931(n + 5), A329707.
Main diagonal is A332865.
Cf. A288026 (the number of placements of dominoes on an m X n grid where no two empty squares are horizontally or vertically adjacent).

Programs

  • PARI
    \\ here R(n) is row 1 as vector.
    R(n)={Vec((1+x+x^2)/(1-x^2-x^3)+O(x*x^n))}
    F(b,r)={my(t=1); while(b, b=(b>>valuation(b,2))+1; my(s=valuation(b,2)); t*=r[s]; b>>=s+1); t}
    step(v,f)={vector(#v, t, my(i=t-1); sum(j=0, #v-1, if(!bitand(i,j), v[1+j]*(f[#v-bitor(i,j)]))))}
    T(m,n)={my(r=R(n), f=vector(2^n, i, F(i-1, r)), v=vector(2^n)); v[1]=1; for(k=2, m, v=step(v,f)); sum(j=0, #v-1, v[1+j]*f[#v-j])}
    {for(m=1, 8, for(n=1, 8, print1(T(m,n), ", ")); print)} \\ Andrew Howroyd, Feb 28 2020
  • Sage
    # See Bjorn Huntemann, Svenja Huntemann, Neil A. McKay link.
    

A382233 Dimensions of the homogeneous component of degree n of the free unital Jordan algebra on 3 generators.

Original entry on oeis.org

1, 3, 6, 18, 45, 135, 378, 1134, 3324, 9981, 29733, 89280, 267273
Offset: 0

Views

Author

Vladimir Dotsenko, Mar 29 2025

Keywords

Comments

First few terms coincide with A032120 but A032120(8) = 3321. This corresponds to the fact that A032120 gives dimensions of components of the free special Jordan algebra (which follows from Cohn 1959), and 3324 - 3321 = 3 is the dimension of the GL_3-orbit of the so called Glennie identity.
The terms up to a(12) were computed using the Albert nonassociative algebra system.

Examples

			For n = 3, we have a(3)=18 since the following monomials form a basis: x(xx), x(xy), x(xz), x(yy), x(yz), x(zz), y(xx), y(xy), y(xz), y(yy), y(yz), y(zz), z(xx), z(xy), z(xz), z(yy), z(yz), z(zz), these are all commutative nonassociative monomials of degree 3, since the Jordan identity is of degree 4.
		

References

  • C. M. Glennie, Identities in Jordan algebras, pp. 307-313 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • D. P. Jacobs, The Albert nonassociative algebra system: a progress report, pp. 41-44 of Proceedings of the International Symposium on Symbolic and Algebraic Computation, Association for Computing Machinery, New York, NY, USA, 1994.

Crossrefs

Showing 1-10 of 11 results. Next