cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A098207 a(n) is the square of near-repdigit number A033175(n).

Original entry on oeis.org

1, 961, 109561, 11095561, 1110955561, 111109555561, 11111095555561, 1111110955555561, 111111109555555561, 11111111095555555561, 1111111110955555555561, 111111111109555555555561
Offset: 0

Views

Author

Labos Elemer, Oct 20 2004

Keywords

Comments

While repunit-squares are palindromic, squares of near repdigits provide other curious digit-patterns.

Crossrefs

Formula

a(n) = A033175(n)^2.
From Chai Wah Wu, Nov 09 2018: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
G.f.: (-4000*x^2 - 850*x - 1)/((x - 1)*(10*x - 1)*(100*x - 1)). (End)

A098208 4th powers of A033175(n) near repdigit numbers.

Original entry on oeis.org

1, 923521, 12003612721, 123111473904721, 1234222258516824721, 12345333336962946024721, 123456444444807407238024721, 1234567555555591851850158024721, 12345678666666670296296279358024721
Offset: 0

Views

Author

Labos Elemer, Oct 20 2004

Keywords

Comments

Display peculiar digit patterns.

Crossrefs

Programs

  • Mathematica
    (FromDigits/@Table[Join[PadLeft[{},n,3],{1}],{n,0,20}])^4 (* Harvey P. Dale, Oct 20 2011 *)

Formula

From Chai Wah Wu, Nov 09 2018: (Start)
a(n) = 11111*a(n-1) - 11222110*a(n-2) + 1122211000*a(n-3) - 11111000000*a(n-4) + 10000000000*a(n-5) for n > 4.
G.f.: (-160000000000*x^4 - 102065000000*x^3 - 1753593000*x^2 - 912410*x - 1)/((x - 1)*(10*x - 1)*(100*x - 1)*(1000*x - 1)*(10000*x - 1)). (End)

A051200 Except for initial term, primes of form "n 3's followed by 1".

Original entry on oeis.org

3, 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333333333333331, 3333333333333333333333333333333333333331, 33333333333333333333333333333333333333333333333331
Offset: 1

Views

Author

Keywords

Comments

"A remarkable pattern that is entirely accidental and leads nowhere" - M. Gardner, referring to the first 8 terms.
a(2)*a(3)*a(4) = 34179391, a Zeisel number (A051015) with coefficients (10,21).
a(2)*a(3)*a(4)*a(5) = 1139233281421, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(6) = 379741768929343351, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(7) = 1265805010367017001532181, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(8) = 42193497392022209194699696424911, a Zeisel number with coefficients (10,21).
Besides first 3, primes of the form (10^n-7)/3, n>1. See A123568. - Vincenzo Librandi, Aug 06 2010
The integer lengths of the terms of the sequence are 1, 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, etc. - Harvey P. Dale, Dec 01 2018

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 194.
  • W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb, Warsaw, 1964; Problem 88 [in English: 200 Problems from the Elementary Theory of Numbers]
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, pp. 8, 56-57.
  • F. Smarandache, Properties of numbers, University of Craiova, 1973

Crossrefs

Programs

  • Mathematica
    Join[{3},Select[Rest[FromDigits/@Table[PadLeft[{1},n,3], {n,50}]], PrimeQ]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

Union of 3 and A123568.

Extensions

More terms from James Sellers
Cross reference added by Harvey P. Dale, May 21 2014

A055557 Numbers k such that 3*R_k - 2 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, 784, 1732, 1918, 8855, 11245, 11960, 12130, 18533, 22718, 23365, 24253, 24549, 25324, 30178, 53718, 380976, 424861, 563535, 666903
Offset: 1

Views

Author

Labos Elemer, Jul 10 2000

Keywords

Comments

Also numbers k such that (10^k-7)/3 is prime.
Sierpiński attributes the primes for k = 2,...,8 to A. Makowski.
The history of the discovery of these numbers may be as follows: a(1)-a(7), Makowski; a(8)-a(18), Caldwell; a(19), Earls; a(20)-a(31), Kamada. (Corrections to this account will be welcomed.)
Concerning certifying primes, see the references by Goldwasser et al., Atkin et al. and Morain. - Labos
No more than 14 consecutive exponents can provide primes because for exponents 15m+2, 16m+9, 18m+12, 22m+21, terms are divisible by 31, 17, 19, 23 respectively. Here 7 of possible 14 is realized. - Labos Elemer, Jan 19 2005
(10^(15m+2)-7)/3 == 0 (mod 31). So 15m+2 isn't a term for m > 0. - Seiichi Manyama, Nov 05 2016

References

  • C. Caldwell, The near repdigit primes 333...331, J.Recreational Math. 21:4 (1989) 299-304.
  • S. Goldwasser and J. Kilian, Almost All Primes Can Be Quickly Certified. in Proc. 18th STOC, 1986, pp. 316-329.
  • W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb [200 Problems from the Elementary Theory of Numbers], Warszawa, 1964; Problem 88.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n - 7)/3], Print[n]], {n, 50410}]
    One may run the prime certificate program as follows <True]}, {n, 1, 16}] (* Labos Elemer *)
  • PARI
    for(n=1,2000, if(isprime((10^n-7)/3),print(n)))

Formula

a(n) = A055520(n) + 1.

Extensions

Corrected and extended by Jason Earls, Sep 22 2001
a(20)-a(31) were found by Makoto Kamada (see links for details). At present they correspond only to probable primes.
a(32)-a(33) from Leonid Durman, Jan 09-10 2012
a(34)-a(35) from Kamada data by Tyler Busby, Apr 14 2024

A086578 a(n) = 7*(10^n - 1).

Original entry on oeis.org

0, 63, 693, 6993, 69993, 699993, 6999993, 69999993, 699999993, 6999999993, 69999999993, 699999999993, 6999999999993, 69999999999993, 699999999999993, 6999999999999993, 69999999999999993, 699999999999999993, 6999999999999999993, 69999999999999999993, 699999999999999999993
Offset: 0

Views

Author

Ray Chandler, Jul 22 2003

Keywords

Comments

Original definition: a(n) = k where R(k+7) = 7.

Crossrefs

Cf. A002275, A004086 (R(n)).
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.
Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), this sequence (m=7), A100412 (m=8).

Programs

  • Magma
    [7*(10^n -1): n in [0..20]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    LinearRecurrence[{11,-10}, {0,63}, 31] (* G. C. Greubel, Apr 14 2023 *)
  • SageMath
    [7*(10^n -1) for n in range(21)] # G. C. Greubel, Apr 14 2023

Formula

a(n) = 7*9*A002275(n) = 7*A002283(n).
R(a(n)) = A086575(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 63*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 7*(exp(10*x) - exp(x)). - G. C. Greubel, Apr 14 2023

Extensions

Edited by Jinyuan Wang, Aug 04 2021

A100412 a(n) = 8*10^n - 7.

Original entry on oeis.org

1, 73, 793, 7993, 79993, 799993, 7999993, 79999993, 799999993, 7999999993, 79999999993, 799999999993, 7999999999993, 79999999999993, 799999999999993, 7999999999999993, 79999999999999993, 799999999999999993
Offset: 0

Views

Author

Farideh Firoozbakht, Dec 08 2004

Keywords

Comments

Also: Numbers n such that n is reversal(n)-th odd number. (This was the original definition. - Ed.)
All semiprimes in this sequence (n = 2, 4, 7, 9, 11, 16, 18, 23, 31, 32, 40, ...) are in A136543. - M. F. Hasler, Nov 03 2012

Examples

			793 is in the sequence because 793 is 397th odd number.
1 is in the sequence because 1 is the 1st odd number. - _M. F. Hasler_, Nov 03 2012
		

Crossrefs

Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), A086578 (m=7), this sequence (m=8).

Programs

  • Magma
    [8*10^n -7: n in [0..20]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    Table[8*10^n-7, {n,0,20}]
  • Maxima
    A100412(n):=8*10^n-7$
    makelist(A100412(n),n,0,17); /* Martin Ettl, Nov 08 2012 */
    
  • PARI
    Vec((1+62*x)/((1-x)*(1-10*x)) + O(x^100)) \\ Colin Barker, Oct 14 2014
    
  • SageMath
    [8*10^n -7 for n in range(21)] # G. C. Greubel, Apr 14 2023

Formula

From Colin Barker, Oct 14 2014: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3).
G.f.: (1+62*x)/((1-x)*(1-10*x)). (End)
E.g.f.: 8*exp(10*x) - 7*exp(x). - G. C. Greubel, Apr 14 2023

Extensions

Edited and extended to offset 0 by M. F. Hasler, Nov 03 2012

A104484 Number of distinct prime divisors of 33...331 (with n 3s).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 2, 2, 3, 1, 3, 4, 3, 2, 4, 3, 3, 2, 4, 3, 3, 2, 3, 4, 6, 2, 2, 3, 3, 4, 4, 1, 3, 3, 6, 6, 3, 2, 3, 5, 3, 1, 3, 3, 4, 6, 3, 3, 5, 3, 5, 1, 3, 6, 5, 4, 3, 5, 3, 3, 5, 4, 6, 6, 3, 6, 2, 2, 4, 1, 5, 5, 5, 4, 4, 7, 2, 2, 5, 6
Offset: 0

Views

Author

Parthasarathy Nambi, Apr 18 2005

Keywords

Comments

Interestingly, the first seven members in this sequence are all primes.

Examples

			Number of distinct prime divisors of 31 is 1 (prime).
Number of distinct prime divisors of 331 is 1 (prime).
Number of distinct prime divisors of 3331 is 1 (prime).
Number of distinct prime divisors of 33331 is 1 (prime).
Number of distinct prime divisors of 333331 is 1 (prime).
Number of distinct prime divisors of 3333331 is 1 (prime).
Number of distinct prime divisors of 33333331 is 1 (prime).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FactorInteger[(10^(n + 1) - 7)/3]], {n, 1, 50}] (* Stefan Steinerberger *)
  • PARI
    a(n) = omega((10^(n + 1) - 7)/3); \\ Michel Marcus, May 13 2020

Formula

a(n) = A001221(A033175(n+1)). - Amiram Eldar, Jan 24 2020, corrected, May 13 2020

Extensions

More terms from Amiram Eldar, Jan 24 2020
a(0) inserted by Amiram Eldar, May 13 2020

A055520 Numbers k such that 30*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 17, 39, 49, 59, 77, 100, 150, 318, 381, 783, 1731, 1917, 8854, 11244, 11959, 12129, 18532, 22717, 23364, 24252, 24548, 25323, 30177, 53717, 380975, 424860
Offset: 1

Views

Author

Keywords

Comments

Also numbers k such that (10^(k+1)-7)/3 is prime.

References

  • Martin Gardner, Strong Laws of Small Primes, in The Last Recreations, p. 194 (1997).

Crossrefs

Cf. A055557.
Indices of A033175 that are primes. Cf. A051200, A055557.

Programs

  • Mathematica
    Do[ If[ PrimeQ[30*(10^n - 1)/9 + 1], Print[n]], {n, 0, 50410}]

Formula

a(n) = A055557(n) - 1. - Robert Price, Jan 30 2015

Extensions

a(32)-a(33) from Leonid Durman, Jan 09-10 2012

A105267 a(n) = the number of divisors of 33...31, with n 3s.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 8, 8, 16, 4, 4, 8, 2, 8, 24, 8, 4, 16, 8, 8, 4, 16, 8, 8, 6, 8, 16, 64, 4, 4, 8, 8, 16, 16, 2, 8, 8, 64, 64, 8, 4, 8, 32, 8, 2, 8, 8, 16, 64, 8, 8, 32, 8, 32, 2, 8, 64, 32, 16, 8, 32, 8, 8, 32, 16, 64, 64, 8, 64, 4, 4, 16, 2
Offset: 0

Views

Author

Parthasarathy Nambi, Apr 29 2005

Keywords

Comments

The first seven 33...31 numbers are prime, so those terms are 2. - Don Reble, Oct 26 2006

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, (10^(n + 1) - 7)/3]; Array[a, 30, 0] (* Amiram Eldar, May 13 2020 *)
  • PARI
    a(n) = numdiv((10^(n + 1) - 7)/3); \\ Michel Marcus, May 13 2020

Formula

a(n) = A000005(A033175(n)). - Amiram Eldar, May 13 2020

Extensions

More terms from Don Reble, Oct 26 2006

A123568 Prime numbers of the form (10^n - 7)/3.

Original entry on oeis.org

31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333333333333331, 3333333333333333333333333333333333333331, 33333333333333333333333333333333333333333333333331
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2006

Keywords

Comments

The number of initial 3s is n - 1.
Note that each n from 2 to 8 gives primes, but after that the n that correspond to primes are progressively further apart. Singh (1997) gives this as an example of why mathematicians don't trust a preponderance of evidence as proof: in the 17th century, when factoring numbers with as few as eight digits wasn't as easy as it is today, the pattern suggested that all numbers of this form are prime. - Alonso del Arte, Nov 11 2012

Examples

			a(7) = 33333331 because that is the seventh number of the specified form to be prime.
333333331 is not in the sequence because it is composite, being the product of 17 and 19607843.
		

References

  • Simon Singh, Fermat's Enigma. New York: Walker & Company (1997) p. 159.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^n - 7)/3], Print[(10^n - 7)/3]], {n, 1, 100}] (* Jasinski *)
    Select[(10^Range[50] - 7)/3, PrimeQ[#] &] (* Alonso del Arte, Nov 11 2012 *)
    Select[Table[FromDigits[PadLeft[{1},n,3]],{n,50}],PrimeQ] (* Harvey P. Dale, Dec 05 2018 *)
  • PARI
    select(ispseudoprime, vector(20, n, (10^n-7)/3)) \\ Charles R Greathouse IV, Nov 12 2012
Showing 1-10 of 14 results. Next