cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A078987 Chebyshev U(n,x) polynomial evaluated at x=19.

Original entry on oeis.org

1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

A078986(n+1)^2 - 10*(6*a(n))^2 = +1, n>=0 (Pell equation +1, see A033313 and A033317).
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,37}. - Milan Janjic, Jan 26 2015

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), this sequence (m=19), A097316 (m=33).

Programs

  • GAP
    m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
  • Magma
    m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
    
  • Maple
    seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
  • Mathematica
    lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
  • PARI
    a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
    
  • PARI
    Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    [lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
    
  • Sage
    [chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
    

Formula

a(n) = 38*a(n-1) - a(n-2), n>=1, a(-1)=0, a(0)=1.
a(n) = S(n, 38) with S(n, x) = U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-38*x+x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*38^(n-2*k).
a(n) = ((19+6*sqrt(10))^(n+1) - (19-6*sqrt(10))^(n+1))/(12*sqrt(10)).
a(n) = Sum_{k=0..n} A101950(n,k)*37^k. - Philippe Deléham, Feb 10 2012
Product_{n>=0} (1 + 1/a(n)) = 1/3*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
Product_{n>=1} (1 - 1/a(n)) = 3/19*(3 + sqrt(10)). - Peter Bala, Dec 23 2012
From Andrea Pinos, Jan 02 2023: (Start)
a(n) = (A097314(n+1) - A097315(n+1))/2.
a(n) = (A097314(n) + A097315(n))/2. (End)

A033316 Value of D for incrementally largest values of minimal x satisfying Pell equation x^2-Dy^2=1.

Original entry on oeis.org

1, 2, 5, 10, 13, 29, 46, 53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, 1621, 2389, 3061, 3469, 4621, 4789, 4909, 5581, 6301, 6829, 8269, 8941, 9949, 12541, 13381, 16069, 17341, 24049, 24229, 25309, 29269, 30781, 32341, 36061
Offset: 1

Views

Author

Keywords

Comments

Equally, value of D for incrementally largest values of minimal y satisfying Pell equation x^2-Dy^2=1.
Values of n where A002349 (or A002350) sets a new record.

Crossrefs

Programs

  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; f[n_] := If[ !IntegerQ[ Sqrt[n]], PellSolve[n][[1]], 1]; a = b = -1; t = {}; Do[b = f[n]; If[b > a, t = Append[t, n]; a = b], {n, 1, 40500}]; t

Extensions

More terms from Robert G. Wilson v, Apr 15 2003

A033317 Smallest positive integer y satisfying the Pell equation x^2 - D*y^2 = 1 for nonsquare D.

Original entry on oeis.org

2, 1, 4, 2, 3, 1, 6, 3, 2, 180, 4, 1, 8, 4, 39, 2, 12, 42, 5, 1, 10, 5, 24, 1820, 2, 273, 3, 4, 6, 1, 12, 6, 4, 3, 320, 2, 531, 30, 24, 3588, 7, 1, 14, 7, 90, 9100, 66, 12, 2, 20, 2574, 69, 4, 226153980, 8, 1, 16, 8, 5967, 4, 936, 30, 413, 2, 267000, 430, 3, 6630, 40, 6, 9
Offset: 1

Views

Author

Keywords

Comments

D = D(n) = A000037(n). - Wolfdieter Lang, Oct 04 2015

Crossrefs

Cf. A000037, A033313 (for the x's), A077232, A077233.

Programs

  • Maple
    F:= proc(d) local r,Q; uses numtheory;
      Q:= cfrac(sqrt(d),'periodic','quotients'):
      r:= nops(Q[2]);
      if r::odd then
        denom(cfrac([op(Q[1]),op(Q[2]),op(Q[2][1..-2])]))
      else
        denom(cfrac([op(Q[1]),op(Q[2][1..-2])]));
      fi
    end proc:
    map(F, remove(issqr,[$1..100])); # Robert Israel, May 17 2015
  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2n]; s = FromContinuedFraction[ContinuedFraction[Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
    A033317 = DeleteCases[PellSolve /@ Range[100], {}][[All, 2]] (* Jean-François Alcover, Nov 21 2020, after N. J. A. Sloane in A002349 *)

Formula

a(n) = sqrt((A033313(n)^2 - 1)/A000037(n)). - Jinyuan Wang, Jul 09 2020

A078986 Chebyshev T(n,19) polynomial.

Original entry on oeis.org

1, 19, 721, 27379, 1039681, 39480499, 1499219281, 56930852179, 2161873163521, 82094249361619, 3117419602578001, 118379850648602419, 4495316905044313921, 170703662541035326579, 6482243859654298096081, 246154563004322292324499, 9347391150304592810234881, 354954709148570204496600979, 13478931556495363178060602321
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

a(n+1)^2 - 10*(6*A078987(n))^2 = 1, n >= 0 (Pell equation +1, see A033313 and A033317).
Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r=sqrt(10). - Benoit Cloitre, Feb 14 2004
Numbers n such that 10*(n^2 - 1) is a square. - Vincenzo Librandi, Aug 08 2010

Crossrefs

Row 3 of array A188645.

Programs

  • Mathematica
    LinearRecurrence[{38, -1},{1, 19},15] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    a(n) = polchebyshev(n, 1, 19); \\ Michel Marcus, Jan 14 2018
  • Sage
    [lucas_number2(n,38,1)/2 for n in range(0, 16)] # Zerinvary Lajos, Nov 07 2009
    

Formula

a(n) = 38*a(n-1) - a(n-2), a(-1) := 19, a(0)=1.
G.f.: (1-19*x)/(1-38*x+x^2).
a(n) = T(n, 19) = (S(n, 38)-S(n-2, 38))/2 = S(n, 38)-19*S(n-1, 38) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(n, 38) = A078987(n).
a(n) = (ap^n + am^n)/2 with ap := 19+6*sqrt(10) and am := 19-6*sqrt(10).
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*19)^(n-2*k), n >= 1.
a(n) = cosh(2*arcsinh(3)*n). - Herbert Kociemba, Apr 24 2008

Extensions

More terms from Indranil Ghosh, Feb 04 2017

A033315 Incrementally largest values of minimal x satisfying Pell equation x^2 - D*y^2 = 1.

Original entry on oeis.org

1, 3, 9, 19, 649, 9801, 24335, 66249, 1766319049, 158070671986249, 2469645423824185801, 159150073798980475849, 838721786045180184649, 25052977273092427986049, 3879474045914926879468217167061449
Offset: 1

Views

Author

Keywords

Crossrefs

Records in A033313 (or A002350).
Cf. A033316 (corresponding values of D).

Programs

  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
    xx = DeleteCases[PellSolve /@ Range[10^5], {}][[All, 1]];
    Reap[Module[{x, record = 0}, Sow[1]; For[i = 1, i <= Length@xx, i++, x = xx[[i]]; If[x > record, record = x; Sow[x]]]]][[2, 1]] (* Jean-François Alcover, Nov 21 2020, after N. J. A. Sloane in A002349 *)

A261246 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 2 is soluble.

Original entry on oeis.org

2, 7, 14, 23, 31, 34, 46, 47, 62, 71, 79, 94, 98, 103, 119, 127, 142, 151, 158, 167, 191, 194, 199, 206, 223, 238, 239, 254, 263, 271, 287, 302, 311, 322, 334, 343, 359, 367, 382, 383, 386, 391, 398, 431, 439, 446, 463, 478, 479, 482, 487, 503, 511
Offset: 1

Views

Author

Wolfdieter Lang, Sep 06 2015

Keywords

Comments

For the fundamental positive solution x(n)^2 - a(n)*y(n)^2 = 2 see (x(n) = A261247(n), y(n) = A261248(n)), for n >= 1.
Conjecture: The sequence consists of all numbers D not a square and even D = 2*d has odd d with prime factors of the form 1 or 7 (mod 8). Odd D has prime factors of the form 1 or 7 (mod 8) but there is an odd number of primes of the form 7 (mod 8). The following will prove that these conditions for D are necessary in order to have solutions.
This conjecture is false. For the odd D case see the counterexamples in A263010, and for the even D in A264352. - Wolfdieter Lang, Nov 12 2015
If there is a solution for D, D not a square, then only one class of solution exists due to Nagell's Theorem 110, p. 208, because then 2 divides 2*D. All solutions will be proper because 2 is a prime.
For the even prime D = p = 2 the positive fundamental solution is [x(1) = 2, y(1) = 1].
For odd primes D = p there can be solutions only for p == +7 (mod 8), that is p from A007522. Then x and y are both odd. Proof: Consider a solution of x^2 - p*y^2 = 2. The parities of x and y have to be either even and even or odd and odd. For odd x one has x^2 == +1 (mod 8) (because x^2 = 8*T(X) + 1 with x = 2*X+1 and the triangular numbers T = A000217); similarly for y^2 if y is odd. In the even-even case x^2 and y^2 are both congruent to 4 (mod 8). The even-even case leads to 4 - 4*p = 2 (mod 8), excluding all odd p, namely p == 1, 3, 5, 7 (mod 8). The odd-odd case is 1 - p*1 = 2 (mod 8), and p == 1, 3, 5 (mod 8) are excluded. Therefore, only p == 7 (mod 8) qualifies for a solution, and then x and y will be both odd.
For D = p == 7 (mod 8) from A007522 one can test if there exists a fundamental positive solution (at most one class can exist, therefore there is either no solution or just one) [2*U(p)+1, 2*V(p)+1] by checking the two inequalities (see Nagell, eq. (4) and (5), p. 206) 0 <= V(p) < floor((Y(p)/sqrt(X(p) + 1) - 1)/2) and 0 <= U(p) <= floor((sqrt(X(p) + 1) - 1)/2), with the positive fundamental solution [X(p), Y(p)] of X^2 - p*Y^2 = +1. These solutions can be found in (A033313(k), A033317(k)) if A000037(k) is the prime p == 7 (mod 8) one is testing.
For composite even D there are solutions only if D/2 is odd. Proof: If D is even then x has to be even, hence x^2 == 0 (mod 4) and then D*y^2 == -2 (mod 4), hence D cannot be 0 (mod 4). Thus an even D can only be of the form D = 2*d with d odd. The modulo 3 and modulo 5 argument used in the next case will show that d can have only prime factors of the form +1 or -1 (mod 8).
For composite odd D one finds like above that the even-even x and y case is excluded, and the odd-odd case needs D == -1 (mod 8) == 7 (mod 8). Hence a candidate for D is from A004771 - A007522. D cannot have any prime factor p of the form 3 or 5 (mod 8) because otherwise x^2 == 2 (mod p), but the Legendre symbol (2/p) = -1 for such p's (see, e.g., Nagell, Theorem 81, p. 136). For example, D = 15 = 3*5 cannot have a solution. Thus the only candidates for D have prime factors p of the form +1 or +7 (mod 8), with the number of the latter ones being odd. E.g., D = 7*17 = 119 qualifies as a candidate and it has indeed solutions, namely the ones obtainable from the fundamental one [11, 1].
The general proper positive solutions for D(n) = a(n) are obtained from the fundamental ones [x(n), y(n)] given in A261247 and A261248 with the help of powers of the matrix M(n) = [[u(n), D(n)*v(n)], [v(n), u(n)]], where u(n) and v(n) are the positive fundamental solutions of U(n) - D(n)*V(n) = 1, by (x(n; k), y(n; k))^T = M(n)^k (x(n), y(n))^T (T for transposed), for k >= 0. [u(n), v(n)] = [A033313(j(n)), A033317(j(n))] if A000037(j(n)) = D(n) = a(n).
Observation: All degrees (7, 47, 79, 103, 119, 127) of the modular equations derived for solving Ramanujan's question 699 by Galkin & Kozirev (see reference and A318732) are terms of this sequence. - Hugo Pfoertner, Sep 24 2023

Examples

			The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[2, [2, 1]], [7, [3, 1]], [14, [4, 1]],
[23, [5, 1]], [31, [39, 7]], [34, [6, 1]],
[46, [156, 23]], [47, [7, 1]], [62, [8, 1]],
[71, [59, 7]], [79, [9, 1]], [94, [1464, 151]],
[98, [10, 1]], [103, [477, 47]], [119, [11, 1]],
[127, [2175, 193]], [142, [12, 1]],
[151, [41571, 3383]], [158, [88, 7]],
[167, [13, 1]], [191, [2999, 217]],
[194, [14, 1]], [199, [127539, 9041]],
[206, [244, 17]], [223, [15, 1]], [238, [108, 7]],
[239, [2489, 161]], ...
		

References

  • J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978; see Chap. 3.
  • V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

See also A038873 (2 and primes == +-1 mod 8), A001132.

Programs

  • Mathematica
    Select[Range[600], False =!= Reduce[x^2 - # y^2 == 2, {x, y}, Integers] &] (* Giovanni Resta, Aug 12 2017 *)

A263012 Odd numbers D not a square that admit proper solutions (x, y) to the Pell equation x^2 - D*y^2 = +8 with both x and y odd.

Original entry on oeis.org

17, 41, 73, 89, 97, 113, 137, 161, 193, 217, 233, 241, 281, 313, 329, 337, 353, 409, 433, 449, 457, 497, 521, 553, 569, 593, 601, 617, 641, 673, 713, 721, 769, 809, 833, 857, 881, 889, 929, 937, 953, 977, 1033, 1049, 1057, 1081, 1097, 1153, 1169, 1193, 1201, 1217, 1241, 1249, 1289, 1321, 1337, 1361, 1409, 1433, 1457, 1481, 1513, 1553, 1561, 1609, 1633, 1649, 1657, 1673, 1697, 1721, 1753, 1777, 1801, 1817, 1841, 1873, 1889, 1913, 1921, 1993
Offset: 1

Views

Author

Wolfdieter Lang, Nov 17 2015

Keywords

Comments

These are the nonsquare odd numbers D that admit proper solutions (x, y) to the generalized Pell equation x^2 - D*y^2 = +8 with both x and y odd. They are given by D == 1 (mod 8), not a square, no prime factors 3 or 5 (mod 8) in the composite case (see A263011), and they are not exceptional values which are given in A264348. Up to the number 2000 these exceptional values are 257, 401, 577, 697, 761, 1009, 1129, 1297, 1393, 1489, 1601, 1897. [sequence reference corrected by Peter Munn, Jun 19 2020]
The corresponding positive proper fundamental solutions (x1(D), y1(D)) for the first class are given in A264349 and A264350. There always seem to be two conjugacy classes. The positive proper fundamental solution of the second class (x2, y2) is, for given D, obtained by applying the matrix M(D) = matrix[[x0(D), D*y0(D)],[y0(D), x0(D)]] on (x1(D), -y1(D))^T (T for transposed). Here (x0(D), y0(D)) is the positive fundamental solution of the Pell equation x^2 - D*y^2 = +1 (which is always proper). See the appropriate entries of A033313 and A033317 for these solutions. There would be only one class (the ambiguous case) if this application of M(D) would lead to (x1(D), y1(D))^T. This does not seem to happen. The positive proper fundamental solutions (x2(D), y2(D)) of the second class are given in A264351 and A264353.
The case of odd D with both y and x even leads to improper solutions obtained from the +2 Pell equation (see A261246), e.g., D = 7 has the fundamental positive improper solution (6, 2) = 2*(3, 1) obtained from the proper solution (3, 1) of x^2 - 7*y^2 = +2 (see A261247(2) and A261248(2)). There is only one class of solutions (ambiguous case).
The case of even D with y odd and x even needs D == 0 (mod 4). See 4*A261246 = A264354 for the even D values that admit proper solutions. There appear one or two classes of solutions in this case.
The improper solutions with even D and both x and y even, come from X^2 - D*Y2 = +2 which needs D/2 odd without prime factors 3 or 5 (mod 8) in the composite case. Such D values that do not admit a solution are called exceptional and are given by A264352.
This is a proper subsequence of A263011.

Examples

			The first positive fundamental solutions of the first class (x1(n), y1(n)) are (the first entry gives D(n) = a(n)):
  [17, (5, 1)], [41, (7, 1)], [73, (9, 1)],
  [89, (217, 23)], [97, (69, 7)], [113, (11, 1)], [137, (199, 17)], [161, (13, 1)],
  [193, (56445, 4063)], [217, (15, 1)],
  [233, (6121, 401)], [241, (46557, 2999)],
  [281, (17, 1)], [313, (9567711, 540799)],
  [329, (127, 7)], [337, (73829571, 4021753)], ...
The first positive fundamental solutions of the second class (x2(n), y2(n)) are:
  [17, (29, 7)], [41, (1223, 191)],
  [73, (1040241, 121751)], [89, (9217, 977)],
  [97, (3642669, 369857)], [113, (445435, 41903)], [137, (122279, 10447)], [161, (3667, 289)],
  [193, (441089445, 31750313)],
  [217, (1034361, 70217)], [233, (700801, 45911)], [241, (866477098293, 55814696449)], ...
		

Crossrefs

A033314 Least D in the Pellian x^2 - D*y^2 = 1 for which x has least solution n.

Original entry on oeis.org

3, 2, 15, 6, 35, 12, 7, 5, 11, 30, 143, 42, 195, 14, 255, 18, 323, 10, 399, 110, 483, 33, 23, 39, 27, 182, 87, 210, 899, 60, 1023, 17, 1155, 34, 1295, 38, 1443, 95, 1599, 105, 1763, 462, 215, 506, 235, 138, 47, 96, 51, 26, 2703, 78, 2915, 21, 3135, 203, 3363
Offset: 2

Views

Author

Keywords

Comments

The i-th solution pair V(i) = [x(i), y(i)] to the Pellian x^2 - D*y^2 = 1 for a given least solution x(1) = n may be generated through the recurrence V(i+2) = 2*n*V(i+1) - V(i) taking V(0) = [1, 0] and V(1) = [n, sqrt((n^2-1)/a(n))]. V(i) stands for the numerator and denominator of the 2i-th convergent of the continued fraction expansion of sqrt(D).
Thus setting n = 3, for instance, we have D = a(3) = 2 and V(1) = [3, 2] so that along with V(0) = [1, 0] recurrence V(i+2) = 6*V(i+1) - V(i) generates [A001333(2k), A000129(2k)]. Similarly, setting n = 9 generates [A023039, A060645], respectively the numerator and denominator of the 2i-th convergent of sqrt(a(9)), i.e., sqrt(5). - Lekraj Beedassy, Feb 26 2002

Crossrefs

Programs

  • Mathematica
    squarefreepart[n_] :=
      Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n]);
    pellminx[d_] := Module[{q, p, z}, {q, p} = ContinuedFraction[Sqrt[d]];
      If[OddQ[p // Length], p = Join[p, p]];
      z = FromContinuedFraction[Join[{q}, Drop[p, -1]]]; Numerator[z]]
    NMAX = 60; a = {};
    For[n = 2, n <= NMAX, n++, s = squarefreepart[n^2 - 1];
    sd = s Divisors[Sqrt[(n^2 - 1)/s]]^2;
    t = Sort[Transpose[{sd, pellminx[#] & /@ sd}]];
    AppendTo[a, Select[t, #[[2]] == n &, 1][[1, 1]]]
    ]; a (* Herbert Kociemba, Jun 05 2022 *)

A077232 a(n) is smallest natural number satisfying Pell equation a^2 - d(n)*b^2= +1 or = -1, with d(n)=A000037(n) (a nonsquare). Corresponding smallest b(n)=A077233(n).

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 3, 10, 7, 18, 15, 4, 4, 17, 170, 9, 55, 197, 24, 5, 5, 26, 127, 70, 11, 1520, 17, 23, 35, 6, 6, 37, 25, 19, 32, 13, 3482, 199, 161, 24335, 48, 7, 7, 50, 649, 182, 485, 89, 15, 151, 99, 530, 31, 29718, 63, 8, 8, 65, 48842, 33, 7775, 251, 3480, 17, 1068, 43, 26, 57799, 351, 53, 80, 9, 9, 82, 55, 378, 10405, 28, 197, 500, 19, 1574, 1151, 12151, 2143295, 39, 49, 5604, 99, 10, 10, 101, 227528
Offset: 1

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

If d(n)=A000037(n) is from A003654 (that is if the regular continued fraction for sqrt(d(n)) has odd (primitive) period length) then the -1 option applies. For such d(n) the minimal a(n) and b(n) numbers for the +1 option are 2*a(n)^2+1 and 2*a(n)*b(n), respectively (see Perron I, pp. 94,95).
If d(n)=A000037(n)= k^2+1, k=1,2,.., then the a^2 - d(n)*b^2 = -1 Pell equation has the minimal solution a(n)=k and b(n)=1. If d(n)=A000037(n)= k^2-1, k=2,3,..., then the a^2 - d(n)*b^2 = +1 Pell equation has the minimal solution a=k and b=1.
The general integer solutions (up to signs) of Pell equation a^2 - d(n)*b^2 = +1 with d(n)=A000037(n), but not from A003654, are a(n,p)= T(p+1,a(n)) and b(n,p)= b(n)*S(p,2*a(n)), p=0,1,... If d(n)=A000037(n) is also from A003654 then these solutions are a(n,p)= T(p+1,2*a(n)^2+1) and b(n,p)= 2*a(n)*b(n)*S(p,2*(2*a(n)^2+1)), p=0,1,... Here T(n,x), resp. S(n,x) := U(n,x/2), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310.
The general integer solutions (up to signs) of the Pell equation a^2 - d(n)*b^2 = -1 with d(n)=A000037(n)= A003654(k), for some k>=1, are a(n,p) = a(n)*(S(n,2*(2*a(n)^2)+1) + S(n-1,2*(2*a(n)^2)+1)) and b(n,p) = b(n)*(S(n,2*(2*a(n)^2)+1) - S(n-1,2*(2*a(n)^2)+1)) with the S(n,x) := U(n,x/2) Chebyshev polynomials. S(-1,x) := 0.
If the trivial solution x=1, y=0 is included, the sequence becomes A006702. - T. D. Noe, May 17 2007

Examples

			d=10=A000037(7)=A003654(3), therefore a(7)^2=10*b(7)^2 -1, i.e. 3^2=10*1^2 -1 and 2*a(7)^2+1=19 and 2*a(7)*b(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1.
d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the a^2 - d*b^2 = -1 Pell equation and a(8)=10 and b(8)=A077233(8)=3 satisfy 10^2 - 11*3^2 = +1.
10=d(7)=A000037(7)=A003654(3)=3^2+1 hence a(7)=3 and b(7)=1 are the smallest numbers satisfying a^2-10*b^2=-1.
8=d(6)=A000037(6)=3^2-1 (not in A003654) hence a(6)=3 and b(6)=1 are the smallest numbers satisfying a^2-8*b^2=+1.
		

References

  • T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301.
  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95).

Crossrefs

Programs

  • Mathematica
    nmax = 500;
    nconv = 200; (* The number of convergents 'nconv' should be increased if the linear recurrence is not found for some terms. *)
    nonSquare[n_] := n + Round[Sqrt[n]];
    a[n_] := a[n] = Module[{lr}, lr = FindLinearRecurrence[ Numerator[ Convergents[ Sqrt[nonSquare[n]], nconv]]]; (1/2) SelectFirst[lr, #>1&]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Mar 10 2021 *)

Formula

a(n)=sqrt(A000037(n)*A077233(n)^2 + (-1)^(c(n))) with c(n)=1 if A000037(n)=A003654(k) for some k>=1 else c(n)=0.

A261250 One half of the even entries of A033317.

Original entry on oeis.org

1, 2, 1, 3, 1, 90, 2, 4, 2, 1, 6, 21, 5, 12, 910, 1, 2, 3, 6, 3, 2, 160, 1, 15, 12, 1794, 7, 45, 4550, 33, 6, 1, 10, 1287, 2, 113076990, 4, 8, 4, 2, 468, 15, 1, 133500, 215, 3315, 20, 3, 9, 3, 15498, 561, 26500, 1, 60, 630, 110532, 2, 3188676, 5, 10, 5, 2, 1557945, 65, 7570212227550, 1, 14, 6, 56648, 48, 455, 30, 14127
Offset: 1

Views

Author

Wolfdieter Lang, Sep 16 2015

Keywords

Comments

2*a(n) = y0(n) is the positive fundamental solution satisfying the Pell equation x0(n)^2 + D(n)*y0(n)^2 = +1 with D(n) coinciding apparently with Conway's rectangular numbers r(n) = A007969(n). The corresponding x0 values are given in A262024.
For a proof of this coincidence see the W. Lang link under A007969. - Wolfdieter Lang, Oct 04 2015

Examples

			The [r(n), x0(n), y0(n)] values for n = 1..16 are:
[2, 3, 2], [5, 9, 4], [6, 5, 2], [10, 19, 6],
[12, 7, 2], [13, 649, 180], [14, 15, 4],
[17, 33, 8], [18, 17, 4], [20, 9, 2],
[21, 55, 12], [22, 197, 42], [26, 51, 10],
[28, 127, 24], [29, 9801, 1820], [30, 11, 2], ...
		

Crossrefs

Programs

  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
    Select[DeleteCases[PellSolve /@ Range[200], {}][[All, 2]], EvenQ]/2 (* Jean-François Alcover, Aug 12 2023, using the PellSolve code given in A033317 *)
Showing 1-10 of 24 results. Next