A078987
Chebyshev U(n,x) polynomial evaluated at x=19.
Original entry on oeis.org
1, 38, 1443, 54796, 2080805, 79015794, 3000519367, 113940720152, 4326746846409, 164302439443390, 6239165952002411, 236924003736648228, 8996872976040630253, 341644249085807301386, 12973484592284636822415, 492650770257730391950384, 18707755785201470257292177
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..632
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- R. Flórez, R. A. Higuita, and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
Chebyshev sequence U(n, m):
A000027 (m=1),
A001353 (m=2),
A001109 (m=3),
A001090 (m=4),
A004189 (m=5),
A004191 (m=6),
A007655 (m=7),
A077412 (m=8),
A049660 (m=9),
A075843 (m=10),
A077421 (m=11),
A077423 (m=12),
A097309 (m=13),
A097311 (m=14),
A097313 (m=15),
A029548 (m=16),
A029547 (m=17),
A144128 (m=18), this sequence (m=19),
A097316 (m=33).
-
m:=19;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
-
m:=19; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019
-
seq( simplify(ChebyshevU(n, 19)), n=0..20); # G. C. Greubel, Dec 22 2019
-
lst={};Do[AppendTo[lst, GegenbauerC[n, 1, 19]], {n, 0, 8^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
ChebyshevU[Range[21] -1, 19] (* G. C. Greubel, Dec 22 2019 *)
-
a(n)=subst(polchebyshev(n,2),x,19) \\ Charles R Greathouse IV, Feb 10 2012
-
Vec(1/(1-38*x+x^2) + O(x^50)) \\ Colin Barker, Jun 15 2015
-
[lucas_number1(n,38,1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
-
[chebyshev_U(n,19) for n in (0..20)] # G. C. Greubel, Dec 22 2019
A033316
Value of D for incrementally largest values of minimal x satisfying Pell equation x^2-Dy^2=1.
Original entry on oeis.org
1, 2, 5, 10, 13, 29, 46, 53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, 1621, 2389, 3061, 3469, 4621, 4789, 4909, 5581, 6301, 6829, 8269, 8941, 9949, 12541, 13381, 16069, 17341, 24049, 24229, 25309, 29269, 30781, 32341, 36061
Offset: 1
-
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; f[n_] := If[ !IntegerQ[ Sqrt[n]], PellSolve[n][[1]], 1]; a = b = -1; t = {}; Do[b = f[n]; If[b > a, t = Append[t, n]; a = b], {n, 1, 40500}]; t
A033317
Smallest positive integer y satisfying the Pell equation x^2 - D*y^2 = 1 for nonsquare D.
Original entry on oeis.org
2, 1, 4, 2, 3, 1, 6, 3, 2, 180, 4, 1, 8, 4, 39, 2, 12, 42, 5, 1, 10, 5, 24, 1820, 2, 273, 3, 4, 6, 1, 12, 6, 4, 3, 320, 2, 531, 30, 24, 3588, 7, 1, 14, 7, 90, 9100, 66, 12, 2, 20, 2574, 69, 4, 226153980, 8, 1, 16, 8, 5967, 4, 936, 30, 413, 2, 267000, 430, 3, 6630, 40, 6, 9
Offset: 1
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Laurent Beeckmans, Squares Expressible as Sum of Consecutive Squares, Am. Math. Monthly, Volume 101, Number 5, page 442, May 1994.
- S. R. Finch, Class number theory [Cached copy, with permission of the author]
- Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris. See column B page 19.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Eric Weisstein's World of Mathematics, Pell Equation
-
F:= proc(d) local r,Q; uses numtheory;
Q:= cfrac(sqrt(d),'periodic','quotients'):
r:= nops(Q[2]);
if r::odd then
denom(cfrac([op(Q[1]),op(Q[2]),op(Q[2][1..-2])]))
else
denom(cfrac([op(Q[1]),op(Q[2][1..-2])]));
fi
end proc:
map(F, remove(issqr,[$1..100])); # Robert Israel, May 17 2015
-
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2n]; s = FromContinuedFraction[ContinuedFraction[Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
A033317 = DeleteCases[PellSolve /@ Range[100], {}][[All, 2]] (* Jean-François Alcover, Nov 21 2020, after N. J. A. Sloane in A002349 *)
A078986
Chebyshev T(n,19) polynomial.
Original entry on oeis.org
1, 19, 721, 27379, 1039681, 39480499, 1499219281, 56930852179, 2161873163521, 82094249361619, 3117419602578001, 118379850648602419, 4495316905044313921, 170703662541035326579, 6482243859654298096081, 246154563004322292324499, 9347391150304592810234881, 354954709148570204496600979, 13478931556495363178060602321
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..632
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
-
LinearRecurrence[{38, -1},{1, 19},15] (* Ray Chandler, Aug 11 2015 *)
-
a(n) = polchebyshev(n, 1, 19); \\ Michel Marcus, Jan 14 2018
-
[lucas_number2(n,38,1)/2 for n in range(0, 16)] # Zerinvary Lajos, Nov 07 2009
A033315
Incrementally largest values of minimal x satisfying Pell equation x^2 - D*y^2 = 1.
Original entry on oeis.org
1, 3, 9, 19, 649, 9801, 24335, 66249, 1766319049, 158070671986249, 2469645423824185801, 159150073798980475849, 838721786045180184649, 25052977273092427986049, 3879474045914926879468217167061449
Offset: 1
Cf.
A033316 (corresponding values of D).
-
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
xx = DeleteCases[PellSolve /@ Range[10^5], {}][[All, 1]];
Reap[Module[{x, record = 0}, Sow[1]; For[i = 1, i <= Length@xx, i++, x = xx[[i]]; If[x > record, record = x; Sow[x]]]]][[2, 1]] (* Jean-François Alcover, Nov 21 2020, after N. J. A. Sloane in A002349 *)
A261246
Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 2 is soluble.
Original entry on oeis.org
2, 7, 14, 23, 31, 34, 46, 47, 62, 71, 79, 94, 98, 103, 119, 127, 142, 151, 158, 167, 191, 194, 199, 206, 223, 238, 239, 254, 263, 271, 287, 302, 311, 322, 334, 343, 359, 367, 382, 383, 386, 391, 398, 431, 439, 446, 463, 478, 479, 482, 487, 503, 511
Offset: 1
The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[2, [2, 1]], [7, [3, 1]], [14, [4, 1]],
[23, [5, 1]], [31, [39, 7]], [34, [6, 1]],
[46, [156, 23]], [47, [7, 1]], [62, [8, 1]],
[71, [59, 7]], [79, [9, 1]], [94, [1464, 151]],
[98, [10, 1]], [103, [477, 47]], [119, [11, 1]],
[127, [2175, 193]], [142, [12, 1]],
[151, [41571, 3383]], [158, [88, 7]],
[167, [13, 1]], [191, [2999, 217]],
[194, [14, 1]], [199, [127539, 9041]],
[206, [244, 17]], [223, [15, 1]], [238, [108, 7]],
[239, [2489, 161]], ...
- J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978; see Chap. 3.
- V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
-
Select[Range[600], False =!= Reduce[x^2 - # y^2 == 2, {x, y}, Integers] &] (* Giovanni Resta, Aug 12 2017 *)
A263012
Odd numbers D not a square that admit proper solutions (x, y) to the Pell equation x^2 - D*y^2 = +8 with both x and y odd.
Original entry on oeis.org
17, 41, 73, 89, 97, 113, 137, 161, 193, 217, 233, 241, 281, 313, 329, 337, 353, 409, 433, 449, 457, 497, 521, 553, 569, 593, 601, 617, 641, 673, 713, 721, 769, 809, 833, 857, 881, 889, 929, 937, 953, 977, 1033, 1049, 1057, 1081, 1097, 1153, 1169, 1193, 1201, 1217, 1241, 1249, 1289, 1321, 1337, 1361, 1409, 1433, 1457, 1481, 1513, 1553, 1561, 1609, 1633, 1649, 1657, 1673, 1697, 1721, 1753, 1777, 1801, 1817, 1841, 1873, 1889, 1913, 1921, 1993
Offset: 1
The first positive fundamental solutions of the first class (x1(n), y1(n)) are (the first entry gives D(n) = a(n)):
[17, (5, 1)], [41, (7, 1)], [73, (9, 1)],
[89, (217, 23)], [97, (69, 7)], [113, (11, 1)], [137, (199, 17)], [161, (13, 1)],
[193, (56445, 4063)], [217, (15, 1)],
[233, (6121, 401)], [241, (46557, 2999)],
[281, (17, 1)], [313, (9567711, 540799)],
[329, (127, 7)], [337, (73829571, 4021753)], ...
The first positive fundamental solutions of the second class (x2(n), y2(n)) are:
[17, (29, 7)], [41, (1223, 191)],
[73, (1040241, 121751)], [89, (9217, 977)],
[97, (3642669, 369857)], [113, (445435, 41903)], [137, (122279, 10447)], [161, (3667, 289)],
[193, (441089445, 31750313)],
[217, (1034361, 70217)], [233, (700801, 45911)], [241, (866477098293, 55814696449)], ...
A033314
Least D in the Pellian x^2 - D*y^2 = 1 for which x has least solution n.
Original entry on oeis.org
3, 2, 15, 6, 35, 12, 7, 5, 11, 30, 143, 42, 195, 14, 255, 18, 323, 10, 399, 110, 483, 33, 23, 39, 27, 182, 87, 210, 899, 60, 1023, 17, 1155, 34, 1295, 38, 1443, 95, 1599, 105, 1763, 462, 215, 506, 235, 138, 47, 96, 51, 26, 2703, 78, 2915, 21, 3135, 203, 3363
Offset: 2
-
squarefreepart[n_] :=
Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n]);
pellminx[d_] := Module[{q, p, z}, {q, p} = ContinuedFraction[Sqrt[d]];
If[OddQ[p // Length], p = Join[p, p]];
z = FromContinuedFraction[Join[{q}, Drop[p, -1]]]; Numerator[z]]
NMAX = 60; a = {};
For[n = 2, n <= NMAX, n++, s = squarefreepart[n^2 - 1];
sd = s Divisors[Sqrt[(n^2 - 1)/s]]^2;
t = Sort[Transpose[{sd, pellminx[#] & /@ sd}]];
AppendTo[a, Select[t, #[[2]] == n &, 1][[1, 1]]]
]; a (* Herbert Kociemba, Jun 05 2022 *)
A077232
a(n) is smallest natural number satisfying Pell equation a^2 - d(n)*b^2= +1 or = -1, with d(n)=A000037(n) (a nonsquare). Corresponding smallest b(n)=A077233(n).
Original entry on oeis.org
1, 2, 2, 5, 8, 3, 3, 10, 7, 18, 15, 4, 4, 17, 170, 9, 55, 197, 24, 5, 5, 26, 127, 70, 11, 1520, 17, 23, 35, 6, 6, 37, 25, 19, 32, 13, 3482, 199, 161, 24335, 48, 7, 7, 50, 649, 182, 485, 89, 15, 151, 99, 530, 31, 29718, 63, 8, 8, 65, 48842, 33, 7775, 251, 3480, 17, 1068, 43, 26, 57799, 351, 53, 80, 9, 9, 82, 55, 378, 10405, 28, 197, 500, 19, 1574, 1151, 12151, 2143295, 39, 49, 5604, 99, 10, 10, 101, 227528
Offset: 1
d=10=A000037(7)=A003654(3), therefore a(7)^2=10*b(7)^2 -1, i.e. 3^2=10*1^2 -1 and 2*a(7)^2+1=19 and 2*a(7)*b(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1.
d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the a^2 - d*b^2 = -1 Pell equation and a(8)=10 and b(8)=A077233(8)=3 satisfy 10^2 - 11*3^2 = +1.
10=d(7)=A000037(7)=A003654(3)=3^2+1 hence a(7)=3 and b(7)=1 are the smallest numbers satisfying a^2-10*b^2=-1.
8=d(6)=A000037(6)=3^2-1 (not in A003654) hence a(6)=3 and b(6)=1 are the smallest numbers satisfying a^2-8*b^2=+1.
- T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301.
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95).
-
nmax = 500;
nconv = 200; (* The number of convergents 'nconv' should be increased if the linear recurrence is not found for some terms. *)
nonSquare[n_] := n + Round[Sqrt[n]];
a[n_] := a[n] = Module[{lr}, lr = FindLinearRecurrence[ Numerator[ Convergents[ Sqrt[nonSquare[n]], nconv]]]; (1/2) SelectFirst[lr, #>1&]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Mar 10 2021 *)
A261250
One half of the even entries of A033317.
Original entry on oeis.org
1, 2, 1, 3, 1, 90, 2, 4, 2, 1, 6, 21, 5, 12, 910, 1, 2, 3, 6, 3, 2, 160, 1, 15, 12, 1794, 7, 45, 4550, 33, 6, 1, 10, 1287, 2, 113076990, 4, 8, 4, 2, 468, 15, 1, 133500, 215, 3315, 20, 3, 9, 3, 15498, 561, 26500, 1, 60, 630, 110532, 2, 3188676, 5, 10, 5, 2, 1557945, 65, 7570212227550, 1, 14, 6, 56648, 48, 455, 30, 14127
Offset: 1
The [r(n), x0(n), y0(n)] values for n = 1..16 are:
[2, 3, 2], [5, 9, 4], [6, 5, 2], [10, 19, 6],
[12, 7, 2], [13, 649, 180], [14, 15, 4],
[17, 33, 8], [18, 17, 4], [20, 9, 2],
[21, 55, 12], [22, 197, 42], [26, 51, 10],
[28, 127, 24], [29, 9801, 1820], [30, 11, 2], ...
-
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
Select[DeleteCases[PellSolve /@ Range[200], {}][[All, 2]], EvenQ]/2 (* Jean-François Alcover, Aug 12 2023, using the PellSolve code given in A033317 *)
Showing 1-10 of 24 results.
Comments