A052530 a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 2.
0, 2, 8, 30, 112, 418, 1560, 5822, 21728, 81090, 302632, 1129438, 4215120, 15731042, 58709048, 219105150, 817711552, 3051741058, 11389252680, 42505269662, 158631825968, 592022034210, 2209456310872, 8245803209278, 30773756526240
Offset: 0
Examples
Colored compositions. a(2) = 8: There are two compositions of 4 into even parts, namely 4 and 2 + 2. Using primes to indicate the coloring of parts, the 8 colored compositions are 4, 4', 4'', 4''', 2 + 2, 2 + 2', 2' + 2 and 2' + 2'. - _Peter Bala_, Sep 17 2013
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, 2012, Jack N. Averitt College of Graduate Studies, Georgia Southern University.
- J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.
- F. Goebel and A. A. Jagers, On a conjecture of Tutte concerning minimal tree numbers, J. Combin. Theory Ser. B 26 (1979), no. 3, 346-348. MR0535948 (80m:05064). [From _N. J. A. Sloane_, Feb 20 2012]
- A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 460
- N. J. A. Sloane, Transforms
- G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
Programs
-
Haskell
a052530 n = a052530_list !! n a052530_list = 0 : 2 : zipWith (-) (map (* 4) $ tail a052530_list) a052530_list -- Reinhard Zumkeller, Sep 29 2011
-
Magma
I:=[0,2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 25 2019
-
Maple
spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20); s := sqrt(3): a := n -> ((2-s)^n-(s+2)^n)/(s*(s-2)*(s+2)): seq(simplify(a(n)), n=0..24); # Peter Luschny, Apr 28 2020
-
Mathematica
p=1; c=2; a[0]=0; a[1]=c; a[n_]:=a[n]=p*c^2*a[n-1]-a[n-2]; Table[a[n], {n, 0, 20}] NestList[2 # + Sqrt[4 + 3 #^2]&, 0, 200] (* Zak Seidov, Mar 31 2011 *) LinearRecurrence[{4, -1}, {0, 2}, 25] (* T. D. Noe, Jan 09 2012 *) CoefficientList[Series[2x/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, May 31 2023 *)
-
PARI
{ polya002(p,c,m) = local(v,w,j,a); w=0; print1(w,", "); v=c; print1(v,", "); j=1; while(j<=m,a=p*c^2*v-w; print1(a,", "); w=v; v=a; j++) }; polya002(1,2,25)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(2*x/(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
-
PARI
first(n) = n = max(n, 2); my(res = vector(n)); res[1] = 0; res[2] = 2; for(i = 3, n, res[i] = 4 * res[i-1] - res[i-2]); res \\ David A. Corneth, Apr 28 2020
-
Sage
(2*x/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
Formula
G.f.: 2*x/(1 - 4*x + x^2).
Invert transform of even numbers: a(n) = 2*Sum_{k=1..n} k*a(n-k). - Vladeta Jovovic, Apr 27 2001
From Gregory V. Richardson, Oct 06 2002: (Start)
a(n) = Sum_{alpha} -(1/3)*(-1 + 2*alpha)*alpha^(-1 - n), alpha = root of (1 - 4*Z + Z^2).
a(n) = (((2+sqrt(3))^(n+1) - (2-sqrt(3))^(n+1)) - ((2+sqrt(3))^n - (2-sqrt(3))^n) + ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/(3*sqrt(3)). (End)
a(n) = A071954(n) - 2. - N. J. A. Sloane, Feb 20 2005
a(n) = (2*sinh(2n*arcsinh(1/sqrt(2))))/sqrt(3). - Herbert Kociemba, Apr 24 2008
a(n) = 2*A001353(n). - R. J. Mathar, Oct 26 2009
a(n) = ((3 - 2*sqrt(3))/3)*(2 - sqrt(3))^(n - 1) + ((3 + 2*sqrt(3))/3)*(2 + sqrt(3))^(n - 1). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((2 + sqrt(3))^n/sqrt(3)). - Zak Seidov, Mar 31 2011
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/sqrt(3). (See Horadam for construction.) - Johannes Boot, Jan 08 2012
E.g.f.: (exp((2 + sqrt(3))*x) - exp((2 - sqrt(3))*x))/sqrt(3). - Franck Maminirina Ramaharo, Nov 12 2018
a(n+1) = 2*a(n) + sqrt(3*a(n)^2 + 4), n > 1. - Gary Detlefs, Feb 27 2024
Extensions
More terms from James Sellers, Jun 06 2000
Edited by N. J. A. Sloane, Nov 11 2006
a(0) changed to 0 and entry revised accordingly by Max Alekseyev, Nov 15 2007
Signs in definition corrected by John W. Layman, Nov 20 2007
Comments