cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052530 a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 2.

Original entry on oeis.org

0, 2, 8, 30, 112, 418, 1560, 5822, 21728, 81090, 302632, 1129438, 4215120, 15731042, 58709048, 219105150, 817711552, 3051741058, 11389252680, 42505269662, 158631825968, 592022034210, 2209456310872, 8245803209278, 30773756526240
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n-1) and a(n+1) are the solutions for c if b = a(n) in (b^2 + c^2)/(b*c + 1) = 4 and there are no other pairs of solutions apart from consecutive pairs of terms in this sequence. Cf. A061167. - Henry Bottomley, Apr 18 2001
a(n)^2 for n >= 1 gives solutions to A007913(3*x+4) = A007913(x). - Benoit Cloitre, Apr 07 2002
For all terms k of the sequence, 3*k^2 + 4 is a perfect square. Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 06 2002
a(n) = the number of compositions of the integer 2*n into even parts, where each part 2*i comes in 2*i colors. (Dedrickson, Theorem 3.2.6) An example is given below. Cf. A052529, A095263. - Peter Bala, Sep 17 2013
Except for an initial 1, this is the p-INVERT of (1, 1, 1, 1, 1, ...) for p(S) = 1 - 2*S - 2*S^2; see A291000. - Clark Kimberling, Aug 24 2017
a(n+1) is the number of spanning trees of the graph P_n, where P_n is a 2 X n grid with two additional vertices, u and v, where u is adjacent to (1,1) and (2,1), and v is adjacent to (1,n) and (2,n). - Kevin Long, May 04 2018
a(n) is also the output of Tesler's formula for the number of perfect matchings of an m X n Mobius band where m is even and n is odd, specialized to m=2. (The twist is on the length-n side.) - Sarah-Marie Belcastro, Feb 15 2022
In general, values of x and y which satisfy (x^2 + y^2)/(x*y + 1) = k^2 are any two adjacent terms of a second-order recurrence with initial terms 0 and k and signature (k^2,-1). This can also be expressed as a first-order recurrence a(n+1) = (k^2*a(n) + sqrt((k^4-4)*a(n)^2 + 4*k^2))/2, n > 1. - Gary Detlefs, Feb 27 2024

Examples

			Colored compositions. a(2) = 8: There are two compositions of 4 into even parts, namely 4 and 2 + 2. Using primes to indicate the coloring of parts, the 8 colored compositions are 4, 4', 4'', 4''', 2 + 2, 2 + 2', 2' + 2 and 2' + 2'. - _Peter Bala_, Sep 17 2013
		

Crossrefs

Programs

  • Haskell
    a052530 n = a052530_list !! n
    a052530_list =
       0 : 2 : zipWith (-) (map (* 4) $ tail a052530_list) a052530_list
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 25 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
    s := sqrt(3): a := n -> ((2-s)^n-(s+2)^n)/(s*(s-2)*(s+2)):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Apr 28 2020
  • Mathematica
    p=1; c=2; a[0]=0; a[1]=c; a[n_]:=a[n]=p*c^2*a[n-1]-a[n-2]; Table[a[n], {n, 0, 20}]
    NestList[2 # + Sqrt[4 + 3 #^2]&, 0, 200] (* Zak Seidov, Mar 31 2011 *)
    LinearRecurrence[{4, -1}, {0, 2}, 25] (* T. D. Noe, Jan 09 2012 *)
    CoefficientList[Series[2x/(1-4x+x^2),{x,0,30}],x] (* Harvey P. Dale, May 31 2023 *)
  • PARI
    { polya002(p,c,m) = local(v,w,j,a); w=0; print1(w,", "); v=c; print1(v,", "); j=1; while(j<=m,a=p*c^2*v-w; print1(a,", "); w=v; v=a; j++) };
    polya002(1,2,25)
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(2*x/(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
    
  • PARI
    first(n) = n = max(n, 2); my(res = vector(n)); res[1] = 0; res[2] = 2; for(i = 3, n, res[i] = 4 * res[i-1] - res[i-2]); res \\ David A. Corneth, Apr 28 2020
    
  • Sage
    (2*x/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019

Formula

G.f.: 2*x/(1 - 4*x + x^2).
Invert transform of even numbers: a(n) = 2*Sum_{k=1..n} k*a(n-k). - Vladeta Jovovic, Apr 27 2001
From Gregory V. Richardson, Oct 06 2002: (Start)
a(n) = Sum_{alpha} -(1/3)*(-1 + 2*alpha)*alpha^(-1 - n), alpha = root of (1 - 4*Z + Z^2).
a(n) = (((2+sqrt(3))^(n+1) - (2-sqrt(3))^(n+1)) - ((2+sqrt(3))^n - (2-sqrt(3))^n) + ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/(3*sqrt(3)). (End)
a(n) = A071954(n) - 2. - N. J. A. Sloane, Feb 20 2005
a(n) = (2*sinh(2n*arcsinh(1/sqrt(2))))/sqrt(3). - Herbert Kociemba, Apr 24 2008
a(n) = 2*A001353(n). - R. J. Mathar, Oct 26 2009
a(n) = ((3 - 2*sqrt(3))/3)*(2 - sqrt(3))^(n - 1) + ((3 + 2*sqrt(3))/3)*(2 + sqrt(3))^(n - 1). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((2 + sqrt(3))^n/sqrt(3)). - Zak Seidov, Mar 31 2011
a(n) = ((2 + sqrt(3))^n - (2 - sqrt(3))^n)/sqrt(3). (See Horadam for construction.) - Johannes Boot, Jan 08 2012
a(n) = A217233(n) + A217233(n-1) with A217233(-1) = -1. - Bruno Berselli, Oct 01 2012
a(n) = A001835(n+1) - A001835(n). - Kevin Long, May 04 2018
E.g.f.: (exp((2 + sqrt(3))*x) - exp((2 - sqrt(3))*x))/sqrt(3). - Franck Maminirina Ramaharo, Nov 12 2018
a(n+1) = 2*a(n) + sqrt(3*a(n)^2 + 4), n > 1. - Gary Detlefs, Feb 27 2024

Extensions

More terms from James Sellers, Jun 06 2000
Edited by N. J. A. Sloane, Nov 11 2006
a(0) changed to 0 and entry revised accordingly by Max Alekseyev, Nov 15 2007
Signs in definition corrected by John W. Layman, Nov 20 2007