A092582 Triangle read by rows: T(n,k) is the number of permutations p of [n] having length of first run equal to k.
1, 1, 1, 3, 2, 1, 12, 8, 3, 1, 60, 40, 15, 4, 1, 360, 240, 90, 24, 5, 1, 2520, 1680, 630, 168, 35, 6, 1, 20160, 13440, 5040, 1344, 280, 48, 7, 1, 181440, 120960, 45360, 12096, 2520, 432, 63, 8, 1, 1814400, 1209600, 453600, 120960, 25200, 4320, 630, 80, 9, 1
Offset: 1
Examples
T(4,3) = 3 because 1243, 1342 and 2341 are the only permutations of [4] having length of first run equal to 3. 1; 1, 1; 3, 2, 1; 12, 8, 3, 1; 60, 40, 15, 4, 1; 360, 240, 90, 24, 5, 1; 2520, 1680, 630, 168, 35, 6, 1; ...
References
- M. Bona, Combinatorics of Permutations, Chapman&Hall/CRC, Boca Raton, Florida, 2004.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Colin Defant and James Propp, Quantifying Noninvertibility in Discrete Dynamical Systems, arXiv:2002.07144 [math.CO], 2020.
- Emeric Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004.
Crossrefs
Programs
-
GAP
Flat(List([1..11],n->Concatenation([1],List([1..n-1],k->Factorial(n)*k/Factorial(k+1))))); # Muniru A Asiru, Jun 10 2018
-
Magma
A092582:= func< n,k | k eq n select 1 else k*Factorial(n)/Factorial(k+1) >; [A092582(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 06 2022
-
Mathematica
Drop[Drop[Abs[Map[Select[#, # < 0 &] &, Map[Differences, nn = 10; Range[0, nn]! CoefficientList[Series[(Exp[y x] - 1)/(1 - x), {x, 0, nn}], {x, y}]]]], 1], -1] // Grid (* Geoffrey Critzer, Jun 18 2017 *)
-
PARI
{T(n, k) = if( n<1 || k>n, 0, k==n, 1, n! * k /(k+1)!)}; /* Michael Somos, Jun 25 2017 */
-
SageMath
def A092582(n,k): return 1 if (k==n) else k*factorial(n)/factorial(k+1) flatten([[A092582(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Sep 06 2022
Formula
T(n, k) = n!*k/(k+1)! for k
Inverse of:
1;
-1, 1;
-1, -2, 1;
-1, -2, -3, 1;
-1, -2, -3, -4, 1;
... where A002260 = (1; 1,2; 1,2,3; ...). - Gary W. Adamson, Feb 22 2012
T(2n,n) = A092956(n-1) for n>0. - Alois P. Heinz, Jun 19 2017
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A002627(n).
|Sum_{k=1..n} (-1)^k * T(n,k)| = A055596(n) for n>=1. (End)
From G. C. Greubel, Sep 06 2022: (Start)
T(n, 1) = A001710(n).
T(n, 2) = 2*A001715(n) + [n=2]/3, n >= 2.
T(n, 3) = 3*A001720(n) + [n=3]/4, n >= 3.
T(n, 4) = 4*A001725(n) + [n=4]/5, n >= 4.
T(n, n-1) = A000027(n-1).
T(n, n-2) = A005563(n-1), n >= 3. (End)
Sum_{k=0..n} (k+1) * T(n,k) = A000522(n). - Alois P. Heinz, Apr 28 2023
A096654 Denominators of self-convergents to 1/(e-2).
1, 2, 8, 38, 222, 1522, 11986, 106542, 1054766, 11506538, 137119578, 1772006854, 24681524038, 368577425634, 5874202721042, 99515904921182, 1785757627196766, 33835407673201882, 675016383080377546, 14143200407398386678, 310507536216973671158, 7128173005328786885714
Offset: 0
Comments
The self-continued fraction of r>0 is here introduced as the sequence (b(0), b(1), b(2), ...) defined as follows: put r(0)=r, b(0)=[r(0)] and for n>=1, put r(n)=b(n-1)/(r(n-1)-b(n-1)) and b(n)=[r(n)]. This differs from simple continued fraction, for which r(n)=1/(r(n-1)-b(n-1)). Now r=lim(p(n)/q(n)), where p(0)=b(1), q(0)=1, p(1)=b(0)(b(1)+1), q(1)=b(1) and for n>=2, p(n)=b(n)*p(n-1)+b(n-1)*p(n-2), q(n)=b(n)*q(n-1)+b(n-1)*q(n-2); p(0),p(1),... are the numerators of the self-convergents to r; q(0),q(1),... are the denominators of the self-convergents to r. Thus A096654 is given by a(n)=(n+1)*a(n-1)+n*a(n-2), a(0)=1, a(1)=2.
Number of increasing runs of odd length in all permutations of [n+1]. Example: a(2) = 8 because we have (123), 13(2), (3)12, (2)13, 23(1), (3)(2)(1) (the runs of odd length are shown between parentheses). - Emeric Deutsch, Aug 29 2004
Examples
a(2)=q(2)=3*2+2*1=8, a(3)=q(3)=4*8+3*2=38. The convergents p(0)/q(0) to p(4)/q(4) are 1/1, 3/2, 11/8, 53/38, 309/222.
Programs
-
Maple
G:=(3-x-2*(1+x)*exp(-x))/(1-x)^3: Gser:=series(G,x=0,22): 1,seq(n!*coeff(Gser,x^n),n=1..21);
-
Mathematica
With[{g = (3 - x - 2*(1 + x)*Exp[-x])/(1 - x)^3},CoefficientList[Series[g, {x, 0, 21}], x]*Table[k!, {k, 0, 21}]] (* Shenghui Yang, Oct 15 2024 *)
-
PARI
x='x+O('x^66); Vec(serlaplace((3-x-2*(1+x)*exp(-x))/(1-x)^3)) /* Joerg Arndt, Aug 06 2012 */
-
Python
prpr = 1 prev = 2 for n in range(2, 77): print(prpr, end=', ') curr = (n+1)*prev + n*prpr prpr = prev prev = curr # Alex Ratushnyak, Aug 05 2012
Formula
a(n) = (n+1)*a(n-1) + n*a(n-2), with a(0)=1, a(1)=2. - Alex Ratushnyak, Aug 05 2012
E.g.f.: (3-x-2*(1+x)*exp(-x))/(1-x)^3. - Emeric Deutsch, Aug 29 2004
From Gary Detlefs, Apr 12 2010: (Start)
a(n) = (n+1)! - 2*floor(((n+1)!+1)/e) + (n+2)!-2*floor(((n+2)!+1)/e). (End)
a(n) = ((n+3)!-2*floor(((n+3)!+1)/e))/(n+2). - Gary Detlefs, Jul 11 2010 [corrected by Gary Detlefs, Oct 26 2020]
a(n) = Sum_{k=1..n+1} A097591(n+1,k). - Alois P. Heinz, Jul 03 2019
Extensions
More terms from Emeric Deutsch, Aug 29 2004
A227918 Sum over all permutations beginning and ending with ascents, and without double ascents on n elements and each permutation contributes 2 to the power of the number of double descents.
1, 0, 5, 22, 137, 956, 7653, 68874, 688745, 7576192, 90914309, 1181886014, 16546404201, 248196063012, 3971137008197, 67509329139346, 1215167924508233, 23088190565656424, 461763811313128485, 9697040037575698182, 213334880826665360009, 4906702259013303280204, 117760854216319278724901
Offset: 2
Keywords
Examples
a(4) = 5 since the sum is over the five permutations 1324, 1423, 2314, 2413 and 3412, and each of them contribute 1 to the sum, since none of them has a double descent.
Links
- R. Ehrenborg and J. Jung, Descent pattern avoidance, Adv. in Appl. Math., 49 (2012) 375-390.
Programs
-
Mathematica
a[2] = 1; a[n_] := n*a[n - 1] + 1 + 4 (-1)^n; Table[a[n], {n, 2, 20}] (* Wesley Ivan Hurt, May 04 2014 *)
Formula
E.g.f.: (exp(x) - 4 + 4*exp(-x))/(1-x) - 1 + 2*x.
Closest integer to (e - 4 + 4/e)*n! for n > 7.
a(n) = n*a(n-1) + 1 + 4*(-1)^n.
Conjecture: a(n) -n*a(n-1) -a(n-2) +(n-2)*a(n-3) = 0. - R. J. Mathar, Jul 17 2014
A230071 Sum over all permutations without double ascents on n elements and each permutation contributes 2 raised to the power of the number of double descents.
0, 0, 2, 6, 26, 130, 782, 5474, 43794, 394146, 3941462, 43356082, 520272986, 6763548818, 94689683454, 1420345251810, 22725524028962, 386333908492354, 6954010352862374, 132126196704385106, 2642523934087702122, 55493002615841744562, 1220846057548518380366
Offset: 0
Keywords
Examples
For n=3 the a(3)= 6 since the 4 permutations 132, 213, 231, 312 all contribute 1 and 321 contributes 2 to the sum. Note when n=4, the permutation 4321 contributes 4 since it has two double descents. G.f. = 2*x^2 + 6*x^3 + 26*x^4 + 130*x^5 + 782*x^6 + 5474*x^7 + 43794*x^8 + ...
Links
- R. Ehrenborg and J. Jung, Descent pattern avoidance, Adv. in Appl. Math., 49 (2012) 375-390.
Programs
-
Maple
a := proc(n) if n < 2 then 0 elif n = 2 then 2 else (2-n)*a(n-3)+a(n-2)+n*a(n-1) fi end: seq(a(n), n=0..9); # Peter Luschny, May 30 2014
-
Mathematica
a[0] = 0; a[n_] := a[n] = n a[n-1] + (-1)^n + 1; Array[a, 23, 0] (* Jean-François Alcover, Jul 08 2019, after A080227 *)
Formula
E.g.f.: (exp(x)+exp(-x)-2)/(1-x).
a(n) = closest integer to (e-2+1/e)*n! for n > 3.
a(n) = (2-n)*a(n-3) + a(n-2) + n*a(n-1) for n > 2.
a(n) = 2*A080227(n).
a(n) = sum(0<=kA002627(k)). - Peter Luschny, May 30 2014
0 = a(n)*(+a(n+1) - a(n+2) - 3*a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) + a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) if n>=0. - Michael Somos, May 30 2014
Extensions
a(0) and a(1) prepended, partially edited. - Peter Luschny, May 30 2014
A355229 E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(x).
0, 1, 0, 2, 3, 16, 65, 365, 2261, 16240, 131097, 1182013, 11779537, 128737088, 1532051287, 19731964705, 273556185109, 4062828620256, 64368863326717, 1083795820014261, 19327395713028985, 363940825109825200, 7216468161637890899, 150304143164083288441
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 25; CoefficientList[Series[(1-x)^(1-x) / E^(1-x) * Integrate[E^(1-x) / (1-x)^(1-x), x], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 25 2022 *)
-
PARI
a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i-1, (j-1)!*binomial(i, j)*v[i-j])); concat(0, v);
Formula
a(0) = 0, a(1) = 1; a(n+1) = Sum_{k=1..n-1} (k-1)! * binomial(n,k) * a(n-k).
E.g.f.: (1-x)^(1-x) / exp(1-x) * Integral(exp(1-x) / (1-x)^(1-x) dx). - Vaclav Kotesovec, Jun 25 2022
A216441 a(n) = n! mod !n.
0, 0, 6, 32, 190, 1332, 10654, 95888, 958878, 10547660, 126571918, 1645434936, 23036089102, 345541336532, 5528661384510, 93987243536672, 1691770383660094, 32143637289541788, 642872745790835758, 13500327661607550920, 297007208555366120238, 6831165796773420765476
Offset: 2
Keywords
Comments
!n is a subfactorial number (A000166).
Examples
a(5) = 5! mod !5 = 120 mod 44 = 32. - _Indranil Ghosh_, Feb 15 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 2..449
Programs
-
Maple
with(numtheory): f:=n->sum(n!*(((-1)^k)*1/k!), k=0..n):for n from 1 to 30 do: x:=irem(n!,f(n)): printf(`%d, `, x):od:
-
Mathematica
Table[Mod[n !, Subfactorial[n]],{n,100} ]
A179539 a(0) = 1, a(1) = 0, a(n) = 2*n*(a(n-1) + a(n-2)), n > 1.
1, 0, 4, 24, 224, 2480, 32448, 488992, 8343040, 158976576, 3346392320, 77118115712, 1931148192768, 52214924020480, 1516090021970944, 47049148379742720, 1554087628854837248, 54438650425975718912, 2015738569973900021760, 78666734375195278145536, 3227298917806767126691840
Offset: 0
Examples
a(2)= 4*(0+1)=4, a(3)=6*(4+0)=24, a(4)=8*(24+4)=224...
Crossrefs
Cf. A055596.
Formula
D-finite with recurrence: 2*n*a(n-2) + 2*n*a(n - 1) - a(n) = 0. Georg Fischer, Mar 31 2025
Extensions
Definition corrected by Bruno Berselli, Jul 20 2010
Typo in a(7) corrected by Georg Fischer, Mar 31 2025
A361938 a(0)=1, a(1)=0; a(n) = floor(n/2)*(a(n-1) + a(n-2)).
1, 0, 1, 1, 4, 10, 42, 156, 792, 3792, 22920, 133560, 938880, 6434640, 51614640, 406344960, 3663676800, 32560174080, 326014657920, 3227173488000, 35531881459200, 387590549472000, 4654346740243200, 55461310186867200, 721387883125324800, 9322190319746304000
Offset: 0
Keywords
Comments
For n <= 1000000, n prime divides a(n) only when n=5 and n composite does not divide a(n) only when n = 9. Is this always so?
Examples
a(0) = 1; a(1) = 0; a(2) = floor(2/2)*(a(1) + a(0)) = 1; a(3) = floor(3/2)*(a(2) + a(1)) = 1; a(4) = floor(4/2)*(a(3) + a(2)) = 4; a(5) = floor(5/2)*(a(4) + a(3)) = 10.
Crossrefs
Cf. A055596.
Programs
-
Mathematica
a[0] = 1; a[1] = 0; a[n_] := a[n] = Floor[n/2] * (a[n - 1] + a[n - 2]); Array[a, 30, 0] (* Amiram Eldar, Apr 05 2023 *)
-
Python
def seqx_it(n): a0 = 1 a1 = 0 sequence_store = [a0,a1] for i in range (2,n): a2 = (i//2) * (a1 + a0) sequence_store.append(a2) a0 = a1 a1 = a2 return sequence_store
Formula
a(0)=1, a(1)=0; a(n) = floor(n/2)*(a(n-1) + a(n-2)).
Comments
Emeric Deutsch, Feb 23 2008