cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000255 a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 53, 309, 2119, 16687, 148329, 1468457, 16019531, 190899411, 2467007773, 34361893981, 513137616783, 8178130767479, 138547156531409, 2486151753313617, 47106033220679059, 939765362752547227, 19690321886243846661, 432292066866171724421
Offset: 0

Views

Author

Keywords

Comments

a(n) counts permutations of [1,...,n+1] having no substring [k,k+1]. - Len Smiley, Oct 13 2001
Also, for n > 0, determinant of the tridiagonal n X n matrix M such that M(i,i)=i and for i=1..n-1, M(i,i+1)=-1, M(i+1,i)=i. - Mario Catalani (mario.catalani(AT)unito.it), Feb 04 2003
Also, for n > 0, maximal permanent of a nonsingular n X n (0,1)-matrix, which is achieved by the matrix with just n-1 0's, all on main diagonal. [For proof, see next entry.] - W. Edwin Clark, Oct 28 2003
Proof from Richard Brualdi and W. Edwin Clark, Nov 15 2003: Let n >= 4. Take an n X n (0,1)-matrix A which is nonsingular. It has t >= n-1, 0's, otherwise there will be two rows of all 1's. Let B be the matrix obtained from A by replacing t-(n-1) of A's 0's with 1's. Let D be the matrix with all 1's except for 0's in the first n-1 positions on the diagonal. This matrix is easily seen to be non-singular. Now we have per(A) < = per(B) < = per (D), where the first inequality follows since replacing 0's by 1's cannot decrease the permanent and the second from Corollary 4.4 in the Brualdi et al. reference, which shows that per(D) is the maximum permanent of ANY n X n matrix with n -1 0's. Corollary 4.4 requires n >= 4. a(n) for n < 4 can be computed directly.
With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, pp. 201-202. - Jaap Spies, Dec 12 2003
Number of fixed-point-free permutations of n+2 that begin with a 2; e.g., for 1234, we have 2143, 2341, 2413, so a(2)=3. Also number of permutations of 2..n+2 that have no agreements with 1..n+1. E.g., for 123 against permutations of 234, we have 234, 342 and 432. Compare A047920. - Jon Perry, Jan 23 2004. [This can be proved by the standard argument establishing that d(n+2) = (n+1)(d(n+1)+d(n)) for derangements A000166 (n+1 choices of where 1 goes, then either 1 is in a transposition, or in a cycle of length at least 3, etc.). - D. G. Rogers, Aug 28 2006]
Stirling transform of A006252(n+1)=[1,1,2,4,14,38,...] is a(n)=[1,3,11,53,309,...]. - Michael Somos, Mar 04 2004
a(n+1) is the sequence of numerators of the self-convergents to 1/(e-2); see A096654. - Clark Kimberling, Jul 01 2004
Euler's interpretation was "fixedpoint-free permutations beginning with 2" and he listed the terms up to 148329 (although he was blind at the time). - Don Knuth, Jan 25 2007
Equals lim_{k->infinity} A153869^k. - Gary W. Adamson, Jan 03 2009
Hankel transform is A059332. - Paul Barry, Apr 22 2009
This sequence appears in the analysis of Euler's divergent series 1 - 1! + 2! - 3! + 4! ... by Lacroix, see Hardy. For information about this and related divergent series see A163940. - Johannes W. Meijer, Oct 16 2009
a(n), n >= 1, enumerates also the ways to distribute n beads, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and one open cord allowed to have any number of beads. Each beadless necklace as well as the beadless cord contributes a factor 1 in the counting, e.g., a(0):=1*1=1. There are k! possibilities for the cord with k>=0 beads, which means that the two ends of the cord should be considered as fixed, in short: a fixed cord. This produces for a(n) the exponential (aka binomial) convolution of the sequences {n!=A000142(n)} and the subfactorials {A000166(n)}.
See the formula below. Alternatively, the e.g.f. for this problem is seen to be (exp(-x)/(1-x))*(1/(1-x)), namely the product of the e.g.f.s for the subfactorials (from the unordered necklace problem, without necklaces with exactly one bead) and the factorials (from the fixed cord problem). Therefore the recurrence with inputs holds also. a(0):=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010
a(n) = (n-1)a(n-1) + (n-2)a(n-2) gives the same sequence offset by a 1. - Jon Perry, Sep 20 2012
Also, number of reduced 2 X (n+2) Latin rectangles. - A.H.M. Smeets, Nov 03 2013
Second column of Euler's difference table (second diagonal in example of A068106). - Enrique Navarrete, Dec 13 2016
If we partition the permutations of [n+2] in A000166 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n) (the class starting with the digit 1 is empty since no derangement starts with 1). Hence, A000166(n+2)=(n+1)*a(n), so a(n) is the size of each nonempty class of permutations of [n+2] in A000166. For example, for n=3 we have 44=4*11 (see link). - Enrique Navarrete, Jan 11 2017
For n >= 1, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+2), 1 <= j <= n. For example, for n=2, the 3 circular permutations in S4 that avoid substrings {13,24} are (1234),(1423),(1432). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - Enrique Navarrete, Feb 15 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) holding for all n and k, which in turn is easily proved by induction making use of the given recurrences. - Peter Bala, Nov 21 2017
Number of permutations of [n] where the k-th fixed points are k-colored and all other points are unicolored. - Alois P. Heinz, Apr 28 2025

Examples

			a(3)=11: 1 3 2 4; 1 4 3 2; 2 1 4 3; 2 4 1 3; 3 2 1 4; 3 2 4 1; 4 1 3 2; 4 2 1 3; 4 3 2 1; 2 4 3 1; 3 1 4 2. The last two correspond to (n-1)*a(n-2) since they contain a [j,n+1,j+1].
Cord-necklaces problem. For n=4 one considers the following weak two part compositions of 4: (4,0), (2,2), (1,3), and (0,4), where (3,1) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively 4!*1, (binomial(4,2)*2)*sf(2), (binomial(4,1)*1)*sf(3), and 1*sf(4) with the subfactorials sf(n):=A000166(n) (see the necklace comment there). This adds up as 24 + 6*2 + 4*2 + 9 = 53 = a(4). - _Wolfdieter Lang_, Jun 02 2010
G.f. = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 309*x^5 + 2119*x^6 + 16687*x^7 + ...
		

References

  • Richard A. Brualdi and Herbert J. Ryser, Combinatorial Matrix Theory, Camb. Univ. Press, 1991, Section 7.2, p. 202.
  • Charalambos A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 and p. 177 (5.1).
  • CRC Handbook of Combinatorial Designs, 1996, p. 104.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, pp. 263-264. See Table 7.5.1, row 0; also Table 7.6.1, row 0.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Ya. Vilenkin, Combinatorics, pp. 54 - 56, Academic Press, 1971. Caravan in the Desert, E_n = a(n-1), n >= 1.

Crossrefs

Row sums of triangle in A046740. A diagonal of triangle in A068106.
A052655 gives occurrence count for non-singular (0, 1)-matrices with maximal permanent, A089475 number of different values of permanent, A089480 occurrence counts for permanents all non-singular (0, 1)-matrices, A087982, A087983.
A diagonal in triangle A010027.
a(n) = A086764(n+1,1).

Programs

  • Haskell
    a000255 n = a000255_list !! n
    a000255_list = 1 : 1 : zipWith (+) zs (tail zs) where
       zs = zipWith (*) [1..] a000255_list
    -- Reinhard Zumkeller, Dec 05 2011
    
  • Magma
    I:=[1, 3]; [1] cat  [n le 2 select I[n] else n*Self(n-1)+(n-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 09 2018
  • Maple
    a := n -> hypergeom([2,-n], [], 1)*(-1)^n:
    seq(simplify(a(n)), n=0..19); # Peter Luschny, Sep 20 2014
    seq(simplify(KummerU(-n, -n-1, -1)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    c = CoefficientList[Series[Exp[ -z]/(1 - z)^2, {z, 0, 30}], z]; For[n = 0, n < 31, n++; Print[c[[n]]*(n - 1)! ]]
    Table[Subfactorial[n] + Subfactorial[n + 1], {n, 0, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
    RecurrenceTable[{a[n]==n a[n-1]+(n-1)a[n-2],a[0]==1,a[1]==1},a[n], {n,20}] (* Harvey P. Dale, May 10 2011 *)
    a[ n_] := If[ n < 0, 0, Round[ n! (n + 2) / E]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ -x] / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {- n, 2}, {}, 1]] (* Michael Somos, Jun 01 2013 *)
    sa[k_Integer]/;k>=2 := SparseArray[{{i_, i_} -> i, Band[{2, 1}] -> -1, {i_, j_} /; (i == j - 1) :> i}, {k, k}]; {1, 1}~Join~Array[Det[sa[#]] &, 20, 2] (* Shenghui Yang, Oct 15 2024 *)
  • PARI
    {a(n) = if( n<0, 0, contfracpnqn( matrix( 2, n, i, j, j - (i==1)))[1, 1])};
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -x + x * O(x^n)) / (1 - x)^2, n))};
    
  • Sage
    from sage.combinat.sloane_functions import ExtremesOfPermanentsSequence2
    e = ExtremesOfPermanentsSequence2()
    it = e.gen(1,1,1)
    [next(it) for i in range(20)]
    # Zerinvary Lajos, May 15 2009
    

Formula

E.g.f.: exp(-x)/(1-x)^2.
a(n) = Sum_{k=0..n} (-1)^k * (n-k+1) * n!/k!. - Len Smiley
Inverse binomial transform of (n+1)!. - Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 09 2001
a(n-2) = !n/(n - 1) where !n is the subfactorial of n, A000166(n). - Lekraj Beedassy, Jun 18 2002
a(n) = floor((1/e)*n!*(n+2)+1/2). - Benoit Cloitre, Jan 15 2004
Apparently lim_{n->infinity} log(n) - log(a(n))/n = 1. - Gerald McGarvey, Jun 12 2004
a(n) = (n*(n+2)*a(n-1) + (-1)^n)/(n+1) for n >= 1, a(0)=1. See the Charalambides reference.
a(n) = GAMMA(n+3,-1)*exp(-1)/(n+1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = A000166(n) + A000166(n+1).
A002469(n) = (n-2)*a(n-1) + A000166(n). - Gary W. Adamson, Apr 17 2009
If we take b(n) = (-1)^(n+1)*a(n) for n > 0, then for n > 1 the arithmetic mean of the first n terms is -b(n-1). - Franklin T. Adams-Watters, May 20 2010
a(n) = hypergeometric([2,-n],[],1)*(-1)^n = KummerU(2,3+n,-1)*(-1)^n. See the Abramowitz-Stegun handbook (for the reference see e.g. A103921) p. 504, 13.1.10, and for the recurrence p. 507, 13.4.16. - Wolfdieter Lang, May 20 2010
a(n) = n!*(1 + Sum_{k=0..n-2} sf(n-k)/(n-k)!) with the subfactorials sf(n):= A000166(n) (this follows from the exponential convolution). - Wolfdieter Lang, Jun 02 2010
a(n) = 1/(n+1)*floor(((n+1)!+1)/e). - Gary Detlefs, Jul 11 2010
a(n) = (Subfactorial(n+2))/(n+1). - Alexander R. Povolotsky, Jan 26 2011
G.f.: 1/(1-x-2x^2/(1-3x-6x^2/(1-5x-12x^2/(1-7x-20x^2/(1-.../(1-(2n+1)x-(n+1)(n+2)x^2/(1-... (continued fraction). - Paul Barry, Apr 11 2011
G.f.: hypergeom([1,2],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Sep 24 2012 - Feb 05 2014: (Start)
Continued fractions:
E.g.f. 1/E(0) where E(k) = 1 - 2*x/(1 + x/(2 - x - 2/(1 + x*(k+1)/E(k+1)))).
G.f.: S(x)/x - 1/x = Q(0)/x - 1/x where S(x) = Sum_{k>=0} k!*(x/(1+x))^k, Q(k) = 1 + (2*k + 1)*x/(1 + x - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + x - x*(k+2)/(1 - x*(k+1)/Q(k+1)).
G.f.: 1/x/Q(0) where Q(k) = 1/x - (2*k+1) - (k+2)*(k+1)/Q(k+1).
G.f.: (1+x)/(x*Q(0)) - 1/x where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: 2/x/G(0) - 1/x where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/ G(k+1))).
G.f.: ((Sum_{k>=0} k!*(x/(1+x))^k) - 1)/x = Q(0)/(2*x) - 1/x where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1+x)/Q(k+1))).
G.f.: W(0) where W(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+2)/(x*(k+1) - 1/W(k+1)))).
G.f.: G(0)/(1-x) where G(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1-x*(1+2*k))*(1-x*(3+2*k))/G(k+1)). (End)
From Peter Bala, Sep 20 2013: (Start)
The sequence b(n) := n!*(n + 2) satisfies the defining recurrence for a(n) but with the starting values b(0) = 2 and b(1) = 3. This leads to the finite continued fraction expansion a(n) = n!*(n+2)*( 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/n)))) ), valid for n >= 2.
Also a(n) = n!*(n+2)*( Sum_{k = 0..n} (-1)^k/(k+2)! ). Letting n -> infinity gives the infinite continued fraction expansion 1/e = 1/(2 + 1/(1 + 1/(2 + 2/(3 + ... + (n-1)/(n + ...)))) ) due to Euler. (End)
0 = a(n)*(+a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(+2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n >= 0. - Michael Somos, May 06 2014
a(n-3) = (n-2)*A000757(n-2) + (2*n-5)*A000757(n-3) + (n-3)*A000757(n-4), n >= 3. - Luis Manuel Rivera Martínez, Mar 14 2015
a(n) = A000240(n) + A000240(n+1), n >= 1. Let D(n) = A000240(n) be the permutations of [n] having no substring in {12,23,...,(n-1)n,n1}. Let d(n) = a(n-1) be the permutations of [n] having no substring in {12,23,...,(n-1)n}. Let d_n1 = A000240(n-1) be the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. Then the link "Forbidden Patterns" shows the bijection d_n1 ~ D(n-1) and since dn = d_n1 U D(n), we get dn = D(n-1) U D(n). Taking cardinalities we get the result for n-1, i.e., a(n-1) = A000240(n-1) + A000240(n). For example, for n=4 in this last equation, we get a(4) = 11 = 3+8. - Enrique Navarrete, Jan 16 2017
a(n) = (n+1)!*hypergeom([-n], [-n-1], -1). - Peter Luschny, Nov 02 2018
Sum_{n>=0} (-1)^n*n!/(a(n)*a(n+1)) = e - 2 (Herzig, 1998). - Amiram Eldar, Mar 07 2022
a(n) = KummerU(-n, -n - 1, -1). - Peter Luschny, May 10 2022

A001048 a(n) = n! + (n-1)!.

Original entry on oeis.org

2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1

Views

Author

Keywords

Comments

Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004
From Jaume Oliver Lafont, Dec 01 2009: (Start)
(1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k).
Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End)
With regard to the comment by Jaume Oliver Lafont: P(n) = 1/a(n) is a probability distribution, with all values given as unit fractions. This distribution is connected to the Irwin-Hall distribution: Consider successively drawn random numbers, uniformly distributed in [0,1]. 1/a(n) is the probability for the sum of the random numbers exceeding 1 exactly with the (n+1)-th summand. P(n) has mean e-1 and variance 3e-e^2. From this we get e as the expected number of summands. - Manfred Boergens, May 20 2024
For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013
In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016
e is approximately a(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019
a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - Dennis P. Walsh, May 24 2020

Examples

			For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A059171.
Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009
From a(2)=3 onward the second topmost row of arrays A276588 and A276955.
Cf. sequences with formula (n + k)*n! listed in A282466, A334397.

Programs

Formula

a(n) = (n+1)*(n-1)!.
E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004
The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004
a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009
a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009
G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017
a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019
a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - Amiram Eldar, Jan 13 2021

Extensions

More terms from James Sellers, Sep 19 2000

A097591 Triangle read by rows: T(n,k) is the number of permutations of [n] with exactly k increasing runs of odd length.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 6, 0, 17, 0, 1, 0, 70, 0, 49, 0, 1, 90, 0, 500, 0, 129, 0, 1, 0, 1890, 0, 2828, 0, 321, 0, 1, 2520, 0, 23100, 0, 13930, 0, 769, 0, 1, 0, 83160, 0, 215292, 0, 62634, 0, 1793, 0, 1, 113400, 0, 1549800, 0, 1697430, 0, 264072, 0, 4097, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 29 2004

Keywords

Examples

			Triangle starts:
     1;
     0,    1;
     1,    0,     1;
     0,    5,     0,    1;
     6,    0,    17,    0,     1;
     0,   70,     0,   49,     0,   1;
    90,    0,   500,    0,   129,   0,   1;
     0, 1890,     0, 2828,     0, 321,   0, 1;
  2520,    0, 23100,    0, 13930,   0, 769, 0, 1;
  ...
Row n has n+1 entries.
Example: T(3,1) = 5 because we have (123), 13(2), (2)13, 23(1) and (3)12 (the runs of odd length are shown between parentheses).
		

Crossrefs

Bisections of columns k=0-1 give: A000680, A302910.
Row sums give A000142.
T(n+1,n-1) gives A000337.
T(4n,2n) gives A308962.

Programs

  • Maple
    G:=t^2/(1-t*x-(1-t^2)*exp(-t*x)): Gser:=simplify(series(G,x=0,12)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(expand(n!*coeff(Gser,x^n))) od: seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..11);
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, x^t, expand(
          add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+
          add(b(u-j, o+j-1, 1)*x^t, j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 19 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, x^t, Expand[Sum[b[u+j-1, o-j, Mod[t+1, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, 1]*x^t, {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

E.g.f.: t^2/[1-tx-(1-t^2)exp(-tx)].
Sum_{k=1..n} k * T(n,k) = A096654(n-1) for n > 0. - Alois P. Heinz, Jul 03 2019

A096655 a(n) = F(n+1)*a(n-1) + F(n)*a(n-2), where F = A000045 (Fibonacci numbers), a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 3, 11, 64, 567, 7883, 172914, 6044619, 338333121, 30444101814, 4414062308985, 1032860468654721, 390416873200823322, 238543681049185056237, 235680767488198152732339
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2004

Keywords

Comments

If the initial values are changed to a(0)=1 and a(1)=2, the resulting sequence (p(0),p(1),...)=(1,2,5,19,....) is essentially A089126. Writing A096655 as (q(0),q(1),...), the quotients p(n)/q(n) are the self-convergents to the number 1.719525... whose self-continued fraction is (1,1,2,3,5,...)=A000045. For definitions, see A096654. Now writing A096655 as (p(0),p(1),...) and A096656 as (q(0),q(1),...), the quotients p(n)/q(n) are the self-convergents to the number 1.389805... whose self-continued fraction is (1,2,3,5,...).

Examples

			a(2) = F(3)*1 + F(2)*1 = 3, a(3) = F(4)*3 + F(3)*1 = 11.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := Fibonacci[n + 1]*a[n - 1] + Fibonacci[n]*a[n - 2]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Jul 09 2004 *)

Formula

a(n) is asymptotic to c*phi^(n(n+1)/2)/5^(n/2) where c=3.487197183858494166192... and phi is the golden ratio. - Benoit Cloitre, Jul 02 2004

Extensions

More terms from Benoit Cloitre, Jul 02 2004

A096658 a(n) = (2^n)*a(n-1) + (2^(n-1))*a(n-2), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 10, 88, 1488, 49024, 3185152, 410836992, 105581969408, 54163142606848, 55517115997749248, 113754516621419872256, 466052199134899187220480, 3818365553813175477506932736, 62563919133290380117615296118784
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2004

Keywords

Comments

This is the sequence of denominators of self-convergents to the number 1.40861... (see A233590) whose self-continued fraction is (1,2,4,8,16,...). See A096657 for numerators and A096654 for definitions.

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[1]=2; a[n_] := (2^n)*a[n-1] + (2^(n-1))*a[n-2]; Table[ a[n], {n, 0, 14}] (* Robert G. Wilson v, Jul 03 2004 *)
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2^n a[n-1]+2^(n-1) a[n-2]},a,{n,20}] (* Harvey P. Dale, Feb 16 2020 *)

Formula

a(n) is asymptotic to c*2^(n(n+1)/2) where c=1.54241381761010214381886547... - Benoit Cloitre, Jul 01 2004
c = (1 + Sum_{k>=1} (Product_{j=1..k} 1/(2^(j-1)*(2^j-1)))) / A233590 = 1.5424138176101021438188654719396629292944606799275904286064... . - Vaclav Kotesovec, Nov 27 2015

Extensions

More terms from Benoit Cloitre, Jul 02 2004

A096656 a(n) = F(n+2)*a(n-1) + F(n+1)*a(n-2), where F = A000045 (Fibonacci numbers), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 8, 46, 408, 5672, 124416, 4349256, 243439224, 21905300016, 3176029293240, 743169188527224, 280914798900088368, 171638202113128667928, 169578263512987049149416, 270985893735725975486862288
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2004

Keywords

Comments

This is the sequence of denominators of self-convergents to the number 1.389805... whose self-continued fraction is (1,2,3,5,8,...) (Fibonacci numbers). See A096655 for numerators and A096654 for definitions.

Examples

			a(2)=F(4)*2+F(3)*1=8, a(3)=F(5)*8+F(4)*2=46.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := Fibonacci[n + 2]*a[n - 1] + Fibonacci[n + 1]*a[n - 2]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Jul 09 2004 *)

Formula

a(n) ~ c * ((1+sqrt(5))/2)^((n+2)*(n+3)/2) / 5^(n/2) where c = 0.5018252861856573838264566231631563920610293670131098212588... . - Vaclav Kotesovec, Nov 27 2015

Extensions

More terms from Robert G. Wilson v, Jul 09 2004

A096657 a(n) = (2^n)*a(n-1) + (2^(n-1))*a(n-2), a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 14, 124, 2096, 69056, 4486656, 578711552, 148724449280, 76295068188672, 78202296743231488, 160236429879963287552, 656488575092059763900416, 5378610735570941915498020864, 88128536246001466497105446043648
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2004

Keywords

Comments

This is the sequence of numerators of self-convergents to the number 1.40861... whose self-continued fraction is (1,2,4,8,16,...)=A000079. See A096658 for denominators and A096654 for definitions.

Examples

			a(2)=4*3+2*1=14, a(3)=8*14+4*3=124.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; a[n_] := (2^n)*a[n-1] + (2^(n-1))*a[n-2]; Table[ a[n], {n, 0, 14}] (* Robert G. Wilson v, Jul 03 2004 *)
    b[n_, k_] := k^2 - k (1 + n) +  n (1 + n)/2;
    a[n_] := Sum[2^b[n, k] QBinomial[n - k + 1, k, 2], {k, 0, n + 1}] ;
    Table[a[n], {n, 0, 14}] (* After Vladimir Kruchinin, Peter Luschny, Jan 19 2020 *)

Formula

a(n) is asymptotic to c*2^(n(n+1)/2) where c = 2.1726687508496636560169136... - Benoit Cloitre, Jul 02 2004
c = 1 + Sum_{k>=1} (Product_{j=1..k} 1/(2^(j-1)*(2^j-1))) = 2.172668750849663656016913609859312820656436935109608860295... . - Vaclav Kotesovec, Nov 27 2015
a(n) = Sum_{k=0..n+1} q-binomial(n-k+1,k)*2^(binomial(n-k+1,2)+binomial(k,2)), where q-binomial is triangle A022166, that is, with q=2. - Vladimir Kruchinin, Jan 19 2020

Extensions

More terms from Benoit Cloitre, Jul 02 2004

A316666 Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.

Original entry on oeis.org

1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
Offset: 0

Views

Author

Michael Wallner, Jul 10 2018

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and at most n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. It is called simple if for nodes with two pointers both point to the same node. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. See the Wallner link.
a(n) is one of two "basis" sequences for sequences of the form a(0)=a, a(1)=b, a(n) = n*a(n-1) + (n-1)*a(n-2), the second basis sequence being A096654 (with 0 appended as a(0)). The sum of these sequences is listed as A000255. - Gary Detlefs, Dec 11 2018

Crossrefs

Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288953 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of simple relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018
  • Maple
    aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a,b,n)-> a*aseq(n) + b*bseq( n): seq(s(1,0,n),n = 0..20);  # Gary Detlefs, Dec 11 2018
  • Mathematica
    terms = 24;
    CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
  • PARI
    Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
    

Formula

E.g.f.: (3*exp(-z)+z-2)/(1-z)^2.
a(n) ~ (3*exp(-1) - 1) * n * n!. - Vaclav Kotesovec, Jul 12 2018
a(n) = 3*round((n+2)*n!/e) - (n+2)*n!. - Gary Detlefs, Dec 11 2018
From Seiichi Manyama, Apr 25 2025: (Start)
a(n) = 3 * A000255(n) - n! - (n+1)!.
a(0) = 1, a(1) = 0; a(n) = n*a(n-1) + (n-1)*a(n-2). (End)
Showing 1-8 of 8 results.