cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A238363 Coefficients for the commutator for the logarithm of the derivative operator [log(D),x^n D^n]=d[(xD)!/(xD-n)!]/d(xD) expanded in the operators :xD:^k.

Original entry on oeis.org

1, -1, 2, 2, -3, 3, -6, 8, -6, 4, 24, -30, 20, -10, 5, -120, 144, -90, 40, -15, 6, 720, -840, 504, -210, 70, -21, 7, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10
Offset: 1

Views

Author

Tom Copeland, Feb 25 2014

Keywords

Comments

Let D=d/dx and [A,B]=A·B-B·A. Then each row corresponds to the coefficients of the operators :xD:^k = x^k D^k in the expansion of the commutator [log(D),:xD:^n]=[-log(x),:xD:^n]=sum(k=0 to n-1, a(n,k) :xD:^k). The e.g.f. is derived from [log(D), exp(t:xD:)]=[-log(x), exp(t:xD:)]= log(1+t)exp(t:xD:), using the shift property exp(t:xD:)f(x)=f((1+t)x).
The reversed unsigned array is A111492.
See the mathoverflow link and link therein to an associated mathstackexchange question for other formulas for log(D). In addition, R_x = log(D) = -log(x) + c - sum[n=1 to infnty, (-1)^n 1/n :xD:^n/n!]=
-log(x) + Psi(1+xD) = -log(x) + c + Ein(:xD:), where c is the Euler-Mascheroni constant, Psi(x), the digamma function, and Ein(x), a breed of the exponential integrals (cf. Wikipedia). The :xD:^k ops. commute; therefore, the commutator reduces to the -log(x) term.
Also the n-th row corresponds to the expansion of d[(xD)!/(xD-n)!]/d(xD) = d[:xD:^n]/d(xD) in the operators :xD:^k, or, equivalently, the coefficients of x in d[z!/(z-n)!]/dz=d[St1(n,z)]]/dz evaluated umbrally with z=St2(.,x), i.e., z^n replaced by St2(n,x), where St1(n,x) and St2(n,x) are the signed and unsigned Stirling polynomials of the first (A008275) and second (A008277) kinds. The derivatives of the unsigned St1 are A028421. See examples. This formalism follows from the relations between the raising and lowering operators presented in the MathOverflow link and the Pincherle derivative. The results can be generalized through the operator relations in A094638, which are related to the celebrated Witt Lie algebra and pseudodifferential operators / symbols, to encompass other integral arrays.
A002741(n)*(-1)^(n+1) (row sums), A002104(n)*(-1)^(n+1) (alternating row sums). Column sequences: A133942(n-1), A001048(n-1), A238474, ... - Wolfdieter Lang, Mar 01 2014
Add an additional head row of zeros to the lower triangular array and denote it as T (with initial indexing in columns and rows being 0). Let dP = A132440, the infinitesimal generator for the Pascal matrix, and I, the identity matrix, then exp(T)=I+dP, i.e., T=log(I+dP). Also, (T_n)^n=0, where T_n denotes the n X n submatrix, i.e., T_n is nilpotent of order n. - Tom Copeland, Mar 01 2014
Any pair of lowering and raising ops. L p(n,x) = n·p(n-1,x) and R p(n,x) = p(n+1,x) satisfy [L,R]=1 which implies (RL)^n = St2(n,:RL:), and since (St2(·,u))!/(St2(·,u)-n)!= u^n, when evaluated umbrally, d[(RL)!/(RL-n)!]/d(RL) = d[:RL:^n]/d(RL) is well-defined and gives A238363 when the LHS is reduced to a sum of :RL:^k terms, exactly as for L=d/dx and R=x above. (Note that R_x above is a raising op. different from x, with associated L_x=-xD.) - Tom Copeland, Mar 02 2014
For relations to colored forests, disposition of flags on flagpoles, and the colorings of the vertices of the complete graphs K_n, encoded in their chromatic polynomials, see A130534. - Tom Copeland, Apr 05 2014
The unsigned triangle, omitting the main diagonal, gives A211603. See also A092271. Related to the infinitesimal generator of A008290. - Peter Bala, Feb 13 2017

Examples

			The first few row polynomials are
p(1,x)=  1
p(2,x)= -1 + 2x
p(3,x)=  2 - 3x + 3x^2
p(4,x)= -6 + 8x - 6x^2 + 4x^3
p(5,x)= 24 -30x +20x^2 -10x^3 + 5x^4
...........
For n=3: z!/(z-3)!=z^3-3z^2+2z=St1(3,z) with derivative 3z^2-6z+2, and
3·St2(2,x)-6·St2(1,x)+2=3(x^2+x)-6x+2=3x^2-3x+2=p(3,x). To see the relation to the operator formalism, note that (xD)^k=St2(k,:xD:) and (xD)!/(xD-k)!=[St2(·,:xD:)]!/[St2(·,:xD:)-k]!= :xD:^k.
The triangle a(n,k) begins:
n\k       0       1       2      3      4     5      6    7   8   9 ...
1:        1
2:       -1       2
3:        2      -3       3
4:       -6       8      -6      4
5:       24     -30      20    -10      5
6:     -120     144     -90     40    -15     6
7:      720    -840     504   -210     70   -21      7
8:    -5040    5760   -3360   1344   -420   112    -28    8
9:    40320  -45360   25920 -10080   3024  -756    168  -36   9
10: -362880  403200 -226800  86400 -25200  6048  -1260  240 -45  10
... formatted by _Wolfdieter Lang_, Mar 01 2014
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := (-1)^(n-k-1)*n!/((n-k)*k!); Table[a[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 09 2015 *)

Formula

a(n,k) = (-1)^(n-k-1)*n!/((n-k)*k!) for k=0 to (n-1).
E.g.f.: log(1+t)*exp(x*t).
E.g.f.for unsigned array: -log(1-t)*exp(x*t).
The lowering op. for the row polynomials is L=d/dx, i.e., L p(n,x) = n*p(n-1,x).
An e.g.f. for an unsigned related version is -log(1+t)*exp(x*t)/t= exp(t*s(·,x)) with s(n,x)=(-1)^n * p(n+1,-x)/(n+1). Let L=d/dx and R= x-(1/((1-D)log(1-D))+1/D),then R s(n,x)= s(n+1,x) and L s(n,x)= n*s(n-1,x), defining a special Sheffer sequence of polynomials, an Appell sequence. So, R (-1)^(n-1) p(n,-x)/n = (-1)^n p(n+1,-x)/(n+1).
From Tom Copeland, Apr 17 2014: (Start)
Dividing each diagonal by its first element (-1)^(n-1)*(n-1)! yields the reverse of A104712.
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result as A007318(x) = P(x). Then with dP = A132440, M = padded A238363 = A238385-I, I = identity matrix, and (B(.,x))^n = B(n,x) = the n-th Bell polynomial Bell(n,x) of A008277,
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x), and
B) P(:xD:)=exp(dP:xD:)=exp[(e^M-I):xD:]=exp[M*B(.,:xD:)]=exp[M*xD]=
(1+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x].
C) P(x)^m = P(m*x). P(2x) = A038207(x) = exp[M*B(.,2x)], face vectors of n-D hypercubes. (End)
From Tom Copeland, Apr 26 2014: (Start)
M = padded A238363 = A238385-I
A) = [St1]*[dP]*[St2] = [padded A008275]*A132440*A048993
B) = [St1]*[dP]*[St1]^(-1)
C) = [St2]^(-1)*[dP]*[St2]
D) = [St2]^(-1)*[dP]*[St1]^(-1),
where [St1]=padded A008275 just as [St2]=A048993=padded A008277.
E) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I + dP)^x*[St1].
F) exp(x*M) = [St1]*P(x)*[St2] = (I + dP)^x,
where (I + dP)^x = sum(k>=0, C(x,k)*dP^k).
Let the row vector Rv=(c0 c1 c2 c3 ...) and the column vector Cv(x)=(1 x x^2 x^3 ...)^Transpose. Form the power series V(x)= Rv * Cv(x) and W(y) := V(x.) evaluated umbrally with (x.)^n = x_n = (y)_n = y!/(y-n)!. Then
G) U(:xD:) = dV(:xD:)/d(xD) = dW(xD)/d(xD) evaluated with (xD)^n = Bell(n,:xD:),
H) U(x) = dV(x.)/dy := dW(y)/dy evaluated with y^n=y_n=Bell(n,x), and
I) U(x) = Rv * M * Cv(x). (Cf. A132440, A074909.) (End)
The Bernoulli polynomials Ber_n(x) are related to the polynomials q_n(x) = p(n+1,x) / (n+1) with the e.g.f. [log(1+t)/t] e^(xt) (cf. s_n (x) above) as Ber_n(x) = St2_n[q.(St1.(x))], umbrally, or [St2]*[q]*[St1], in matrix form. Since q_n(x) is an Appell sequence of polynomials, q_n(x) = [log(1+D_x)/D_x]x^n. - Tom Copeland, Nov 06 2016

Extensions

Pincherle formalism added by Tom Copeland, Feb 27 2014

A251592 Triangle of coefficients of polynomials P(n,t) related to the Mittag-Leffler function, where P(n,t) = Product_{k=0..n-2} n*t-k.

Original entry on oeis.org

1, 0, 2, 0, -3, 9, 0, 8, -48, 64, 0, -30, 275, -750, 625, 0, 144, -1800, 7560, -12960, 7776, 0, -840, 13426, -77175, 204085, -252105, 117649, 0, 5760, -112896, 831488, -3010560, 5734400, -5505024, 2097152, 0, -45360, 1058508, -9573228
Offset: 1

Views

Author

Jean-François Alcover, Dec 05 2014

Keywords

Comments

Second column (unsigned) 2, 3, 8, 30, 144, ... is A001048.
Diagonal 1, 2, 9, 64, 625, 7776, ... is A000169.

Examples

			Triangle begins :
  1;
  0,   2;
  0,  -3,     9;
  0,   8,   -48,   64;
  0, -30,   275, -750,    625;
  0, 144, -1800, 7560, -12960, 7776;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

Cf. A000169, A001048, A156136, A000108 (B_2(x)), A001764 (B_3(x)), A002293 (B_4(x)), A002294 (B_5(x)), A002295 (B_6(x)), A002296 (B_7(x)), A007556 (B_8(x)), A062994 (B_9(x)), A059968 (B_10(x)), A230388 (B_11(x)), A139526, A260687.

Programs

  • Mathematica
    P[n_, t_] := Product[n*t - k, {k, 0, n-2}]; row[n_] := CoefficientList[P[n, t], t]; Table[row[n], {n, 1, 10}] // Flatten

Formula

P(n,t) = (n-1)!*binomial(n*t, n-1).
From Peter Bala, Nov 15 2015: (Start)
E.g.f. (with constant term 1): B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1,n)*x^n = 1 + x + 2*t*x^2/2! + 3*t(3*t - 1)*x^3/3! + 4*t*(4*t - 1)*(4*t - 2)*x^4/4! + ... is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
In the notation of the Bala link, B_t(x) = I^t(1 + x) where I^t is a fractional inversion operator. B_(1+t)(x) is the e.g.f. for A260687.
B_t(x) = 1 + x*B_t(x)^t.
For complex r, B_t(x)^r = Sum_{n >= 0} r/(n*t + r)*binomial(n*t + r,n)*x^n.
log (B_t(x)) = Sum_{n >= 1} 1/(n*t)*binomial(n*t,n)*x^n.
B_2(x) is the o.g.f. for the Catalan numbers A000108. B_t(x) for t = 3,4,5,... gives the o.g.f. for various Fuss-Catalan sequences. See the cross references. (End)

A276955 Square array A(row,col): A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1)); Dispersion of factorial base left shift A153880.

Original entry on oeis.org

1, 2, 3, 6, 8, 4, 24, 30, 12, 5, 120, 144, 48, 14, 7, 720, 840, 240, 54, 26, 9, 5040, 5760, 1440, 264, 126, 32, 10, 40320, 45360, 10080, 1560, 744, 150, 36, 11, 362880, 403200, 80640, 10800, 5160, 864, 168, 38, 13, 3628800, 3991680, 725760, 85680, 41040, 5880, 960, 174, 50, 15, 39916800, 43545600, 7257600, 766080, 367920, 46080, 6480, 984, 246, 56, 16
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

The square array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
When viewed in factorial base (A007623) the terms on each row start all with the same prefix, but with an increasing number of zeros appended to the end. For example, for row 8 (A001344 from a(1)=11 onward), the terms written in factorial base look as: 121, 1210, 12100, 121000, ...

Examples

			The top left {1..9} x {1..18} corner of the array:
   1,  2,   6,   24,   120,    720,    5040,    40320,    362880
   3,  8,  30,  144,   840,   5760,   45360,   403200,   3991680
   4, 12,  48,  240,  1440,  10080,   80640,   725760,   7257600
   5, 14,  54,  264,  1560,  10800,   85680,   766080,   7620480
   7, 26, 126,  744,  5160,  41040,  367920,  3669120,  40279680
   9, 32, 150,  864,  5880,  46080,  408240,  4032000,  43908480
  10, 36, 168,  960,  6480,  50400,  443520,  4354560,  47174400
  11, 38, 174,  984,  6600,  51120,  448560,  4394880,  47537280
  13, 50, 246, 1464, 10200,  81360,  730800,  7297920,  80196480
  15, 56, 270, 1584, 10920,  86400,  771120,  7660800,  83825280
  16, 60, 288, 1680, 11520,  90720,  806400,  7983360,  87091200
  17, 62, 294, 1704, 11640,  91440,  811440,  8023680,  87454080
  18, 72, 360, 2160, 15120, 120960, 1088640, 10886400, 119750400
  19, 74, 366, 2184, 15240, 121680, 1093680, 10926720, 120113280
  20, 78, 384, 2280, 15840, 126000, 1128960, 11249280, 123379200
  21, 80, 390, 2304, 15960, 126720, 1134000, 11289600, 123742080
  22, 84, 408, 2400, 16560, 131040, 1169280, 11612160, 127008000
  23, 86, 414, 2424, 16680, 131760, 1174320, 11652480, 127370880
		

Crossrefs

Inverse permutation: A276956.
Transpose: A276953.
Cf. A276949 (index of column where n appears), A276951 (index of row).
Cf. A153880.
Columns 1-3: A273670, A276932, A276933.
The following lists some of the rows that have their own entries. Pattern present in the factorial base expansion of the terms on that row is given in double quotes:
Row 1: A000142 (from a(1)=1, "1" onward),
Row 2: A001048 (from a(2)=3, "11" onward),
Row 3: A052849 (from a(2)=4, "20" onward).
Row 4: A052649 (from a(1)=5, "21" onward).
Row 5: A108217 (from a(3)=7, "101" onward).
Row 6: A054119 (from a(3)=9, "111" onward).
Row 7: A052572 (from a(2)=10, "120" onward).
Row 8: A001344 (from a(1)=11, "121" onward).
Row 13: A052560 (from a(3)=18, "300" onward).
Row 16: A225658 (from a(1)=21, "311" onward).
Row 20: A276940 (from a(3) = 27, "1011" onward).
Related or similar permutations: A257505, A275848, A273666.
Cf. also arrays A276617, A276588 & A276945.

Programs

Formula

A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1))
As a composition of other permutations:
a(n) = A275848(A257505(n)).

A122843 Triangle read by rows: T(n,k) = the number of ascending runs of length k in the permutations of [n] for k <= n.

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 32, 21, 6, 1, 180, 130, 41, 8, 1, 1200, 930, 312, 67, 10, 1, 9240, 7560, 2646, 602, 99, 12, 1, 80640, 68880, 24864, 5880, 1024, 137, 14, 1, 786240, 695520, 257040, 62496, 11304, 1602, 181, 16, 1, 8467200, 7711200, 2903040, 720720, 133920, 19710, 2360, 231, 18, 1
Offset: 1

Views

Author

David Scambler, Sep 13 2006

Keywords

Comments

Also T(n,k) = number of rising sequences of length k among all permutations. E.g., T(4,3)=6 because in the 24 permutations of n=4, there are 6 rising sequences of length 3: {1,2,3} in {1,2,4,3}, {1,2,3} in {1,4,2,3}, {2,3,4} in {2,1,3,4}, {2,3,4} in {2,3,1,4}, {2,3,4} in {2,3,4,1}, {1,2,3} in {4,1,2,3}. - Harlan J. Brothers, Jul 23 2008
Further comments and formulas from Harlan J. Brothers, Jul 23 2008: (Start)
The n-th row sums to (n+1)!/2, consistent with total count implied by the n-th row in the table of Eulerians, A008292.
Generating this triangle through use of the diagonal polynomials allows one to produce an arbitrary number of "imaginary" columns corresponding to runs of length 0, -1, -2, etc. These columns match A001286, A001048 and the factorial function respectively.
As n->inf, there is a limiting value for the count of each length expressed as a fraction of all rising sequences in the permutations of n. The numerators of the set of limit fractions are given by A028387 and the denominators by A001710.
As a table of diagonals d[i]:
d[1][n] = 1
d[2][n] = 2n
d[3][n] = 3n^2 + 5n - 1
d[4][n] = 4n^3 + 18n^2 + 16n - 6
d[5][n] = 5n^4 + 42n^3 + 106n^2 + 63n - 36
d[6][n] = 6n^5 + 80n^4 + 374n^3 + 688n^2 + 292n - 240
T[n,k] = n!(n(k^2 + k - 1) - k(k^2 - 4) + 1)/(k+2)! + floor(k/n)(1/(k(k+3)+2)), 0 < k <= n. (End)

Examples

			T(3,2) = 4: There are 4 ascending runs of length 2 in the permutations of [3], namely 13 in 132 and in 213, 23 in 231, 12 in 312.
Triangle begins:
    1;
    2,   1;
    7,   4,   1;
   32,  21,   6,   1;
  180, 130,  41,   8,   1;
  ...
		

References

  • C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathematical Society, 1997, pp.120-131.
  • Donald E. Knuth. The Art of Computer Programming. Vol. 2. Addison-Wesley, Reading, MA, 1998. Seminumerical algorithms, Third edition, Section 3.3.2, p.67.

Crossrefs

Programs

  • Maple
    T:= (n, k)-> `if`(n=k, 1, n!/(k+1)!*(k*(n-k+1)+1
                 -((k+1)*(n-k)+1)/(k+2))):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Sep 11 2013
  • Mathematica
    Table[n!((n(k(k+1)-1)-k(k-2)(k+2)+1))/(k+2)!+Floor[k/n]1/(k(k+3)+2),{n,1,10},{k,1,n}]//TableForm (* Harlan J. Brothers, Jul 23 2008 *)

Formula

T(n,k) = n!(n(k(k+1)-1) - k(k-2)(k+2) + 1)/(k+2)! for 0 < k < n; T(n,n) = 1; T(n,k) = A122844(n,k) - A122844(n,k+1).
T(n,k) = A008304(n,k) for k > n/2. - Alois P. Heinz, Oct 17 2013

A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).

Original entry on oeis.org

4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Comments

The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.

Examples

			The first few rows of the triangle are:
  [4]
  [36, 9]
  [576, 144, 64]
  [14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
  MN(z;n=1) = 4
  MN(z;n=2) = 36 + 9*z
  MN(z;n=3) = 576 + 144*z + 64*z^2
  MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
		

References

  • Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.

Crossrefs

A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A162991 and A162992 equal the first and second right hand columns.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A001044, A162993 and A162994 equal the first, second and third left hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
A129202(n)/A129203(n) = (n+1)^2*Li2(z=1)/(Pi^2) = (n+1)^2/6.
Cf. A002378 and A035287.

Programs

  • Maple
    a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
  • Mathematica
    Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)

Formula

a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.

A059171 Size of largest conjugacy class in S_n, the symmetric group on n symbols.

Original entry on oeis.org

1, 1, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1

Views

Author

Des MacHale, Feb 14 2001

Keywords

Comments

Apart from initial terms, same as A001048. The number a(n) is the maximum of row n in the triangle of refined rencontres numbers A181897. - Tilman Piesk, Apr 02 2012

Examples

			a(3) = 3 because the largest conjugacy class in S_3 consists of the three 2-cycles {(12),(13),(23)}.
G.f. = x + x^2 + 3*x^3 + 8*x^4 + 30*x^5 + 144*x^6 + 840*x^7 + 5760*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [1, 1] cat [n*Factorial(n-2): n in [3..25]]; // Vincenzo Librandi, Oct 26 2011
    
  • Maple
    a := proc(n) if n<=2 then RETURN(1) else RETURN(n*(n-2)!) fi: end:for n from 1 to 40 do printf(`%d,`,a(n)) od:
  • Mathematica
    Join[{1,1},Table[n (n-2)!,{n,3,30}]] (* Harvey P. Dale, Oct 25 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ x - x^2/2 - x Log[1 - x], {x, 0, n}]]; (* Michael Somos, Aug 26 2015 *)
    a[ n_] := With[ {m = n - 1}, If[ m < 0, 0, m! SeriesCoefficient[ -Log[1 - x] - x + 1/(1 - x), {x, 0, m}]]]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    Vec(1+x*serlaplace((1+x-x^2)/(1-x)^2+O(x^66))) \\ Joerg Arndt, Mar 28 2013
    
  • PARI
    a(n)=if(n<=1,1,n!/(n-1)); \\ Joerg Arndt, Mar 28 2013

Formula

a(1) = a(2) = 1; a(n) = n*(n-2)! = (n!)/(n-1) for n > 2. This is the number of (n-1)-cycles in S_n.
E.g.f.: -log(1-x) - x + 1/(1-x). [for a(n+1) - Michael Somos, Aug 26 2015]
E.g.f.: x - x^2/2 - x*log(1-x). - Michael Somos, Aug 26 2015
The sequence 1, 3, 8, ... has e.g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n+2-0^n) = n!*A065475(n). - Paul Barry, May 14 2004
E.g.f.: E(0) - x, where E(k) = 1 + x/(k+1)/(1 - 1/(1 + 1/(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Mar 27 2013
G.f.: 1 + x/Q(0), where Q(k)= 1 - x/(1+x) - x/(1+x)*(k+2)/(1 - x/(1+x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
From Amiram Eldar, Jan 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 5/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2/e - 1/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Fabian Rothelius and James A. Sellers, Feb 15 2001

A111492 Triangle read by rows: a(n,k) = (k-1)! * C(n,k).

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 8, 6, 5, 10, 20, 30, 24, 6, 15, 40, 90, 144, 120, 7, 21, 70, 210, 504, 840, 720, 8, 28, 112, 420, 1344, 3360, 5760, 5040, 9, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 10, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880
Offset: 1

Views

Author

Ross La Haye, Nov 15 2005

Keywords

Comments

For k > 1, a(n,k) = the number of permutations of the symmetric group S_n that are pure k-cycles.
Reverse signed array is A238363. For a relation to (Cauchy-Euler) derivatives of the Vandermonde determinant, see Chervov link. - Tom Copeland, Apr 10 2014
Dividing the k-th column of T by (k-1)! for each column generates A135278 (the f-vectors, or face-vectors for the n-simplices). Then ignoring the first column gives A104712, so T acting on the column vector (-0,d,-d^2/2!,d^3/3!,...) gives the Euler classes for hypersurfaces of degree d in CP^n. Cf. A104712 and Dugger link therein. - Tom Copeland, Apr 11 2014
With initial i,j,n=1, given the n X n Vandermonde matrix V_n(x_1,...,x_n) with elements a(i=row,j=column)=(x_j)^(i-1), its determinant |V_n|, and the column vector of n ones C=(1,1,...,1), the n-th row of the lower triangular matrix T is given by the column vector determined by (1/|V_n|) * V_n(:x_1*d/dx_1:,...,:x_n*d/dx_n:)|V_n| * C, where :x_j*d/dx_j:^n = (x_j)^n*(d/dx_j)^n. - Tom Copeland, May 20 2014
For some other combinatorial interpretations of the first three columns of T, see A208535 and the link to necklace polynomials therein. Because of the simple relation of the array to the Pascal triangle, it can easily be related to many other arrays, e.g., T(p,k)/(p*(k-1)!) with p prime gives the prime rows of A185158 and A051168 when the non-integers are rounded to 0. - Tom Copeland, Oct 23 2014

Examples

			a(3,3) = 2 because (3-1)!C(3,3) = 2.
1;
2 1;
3 3 2;
4 6 8 6;
5 10 20 30 24;
6 15 40 90 144 120;
7 21 70 210 504 840 720;
8 28 112 420 1344 3360 5760 5040;
9 36 168 756 3024 10080 25920 45360 40320;
		

Programs

  • Magma
    /* As triangle: */ [[Factorial(k-1)*Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 21 2014
  • Mathematica
    Flatten[Table[(k - 1)!Binomial[n, k], {n, 10}, {k, n}]]

Formula

a(n, k) = (k-1)!C(n, k) = P(n, k)/k.
E.g.f. (by columns) = exp(x)((x^k)/k).
a(n, 1) = A000027(n);
a(n, 2) = A000217(n-1);
a(n, 3) = A007290(n);
a(n, 4) = A033487(n-3).
a(n, n) = A000142(n-1);
a(n, n-1) = A001048(n-1) for n > 1.
Sum[a(n, k), {k, 1, n}] = A002104(n);
Sum[a(n, k), {k, 2, n}] = A006231(n).
a(n,k) = sum(j=k..n-1, j!/(j-k)!) (cf. Chervov link). - Tom Copeland, Apr 10 2014
From Tom Copeland, Apr 28 2014: (Start)
E.g.f. by row: [(1+t)^n-1]/t.
E.g.f. of row e.g.f.s: {exp[(1+t)*x]-exp(x)}/t.
O.g.f. of row e.g.f.s: {1/[1-(1+t)*x] - 1/(1-x)}/t.
E.g.f. of row o.g.f.s: -exp(x) * log(1-t*x). (End)

A282466 a(n) = n*a(n-1) + n!, with n>0, a(0)=5.

Original entry on oeis.org

5, 6, 14, 48, 216, 1200, 7920, 60480, 524160, 5080320, 54432000, 638668800, 8143027200, 112086374400, 1656387532800, 26153487360000, 439378587648000, 7825123418112000, 147254595231744000, 2919482409811968000, 60822550204416000000, 1328364496464445440000
Offset: 0

Views

Author

Bruno Berselli, Feb 22 2017

Keywords

References

  • C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), page 240 (Example 9.57 gives the recurrence).

Crossrefs

Cf. A229039.
Cf. sequences with formula (n + k)*n!: A052521 (k=-5), A282822 (k=-4), A052520 (k=-3), A052571 (k=-2), A062119 (k=-1), A001563 (k=0), A000142 (k=1), A001048 (k=2), A052572 (k=3), A052644 (k=4), this sequence (k=5).

Programs

  • Magma
    A282466:= func< n | (n+5)*Factorial(n) >; // G. C. Greubel, May 14 2025
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}] (* or *)
    Table[(n + 5) n!, {n, 0, 30}]
  • SageMath
    def A282466(n): return (n+5)*factorial(n) # G. C. Greubel, May 14 2025

Formula

E.g.f.: (5 - 4*x)/(1 - x)^2.
a(n) = (n + 5)*n!.
a(n) = 2*A229039(n) for n>0.
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = 9*e - 24.
Sum_{n>=0} (-1)^n/a(n) = 24 - 65/e. (End)

A094310 Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k.

Original entry on oeis.org

1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800, 1814400, 1209600, 907200, 725760, 604800, 518400, 453600, 403200, 362880
Offset: 1

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

The sum of the rows gives A000254 (Stirling numbers of first kind). The first column and the leading diagonal are factorials given by A000142 with offsets of 0 and 1.
T(n,k) is the number of length k cycles in all permutations of {1..n}.
Second diagonal gives A001048(n). - Anton Zakharov, Oct 24 2016
T(n,k) is the number of permutations of [n] with all elements of [k] in a single cycle. To prove this result, let m denote the length of the cycle containing {1,..,k}. Letting m run from k to n, we obtain T(n,k) = Sum_{m=k..n} (C(n-k,m-k)*(m-1)!*(n-m)!) = n!/k. See an example below. - Dennis P. Walsh, May 24 2020

Examples

			Triangle begins as:
      1;
      2,     1;
      6,     3,     2;
     24,    12,     8,     6;
    120,    60,    40,    30,   24;
    720,   360,   240,   180,  144,  120;
   5040,  2520,  1680,  1260, 1008,  840,  720;
  40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040;
  ...
T(4,2) counts the 12 permutations of [4] with elements 1 and 2 in the same cycle, namely, (1 2)(3 4), (1 2)(3)(4), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
		

Crossrefs

Programs

  • Maple
    seq(seq(n!/k, k=1..n), n=1..10);
  • Mathematica
    Table[n!/k, {n,10}, {k,n}]//Flatten
    Table[n!/Range[n], {n,10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *)

Formula

E.g.f. for column k: x^k/(k*(1-x)).
T(n,k)*k = n*n! = A001563(n).

Extensions

More terms from Philippe Deléham, Jun 11 2005
Showing 1-10 of 44 results. Next