A001048
a(n) = n! + (n-1)!.
Original entry on oeis.org
2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 1
For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
- L. B. W. Jolley, Summation of Series, Dover, 1961.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- Barry Balof and Helen Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, Journal of Integer Sequences, Vol. 17 (2014), #14.2.7.
- E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math., Vol. 22, No. 1 (1970), pp. 22-35.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 97.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 641.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 101.
- Helen K. Jenne, Proofs you can count on, Honors Thesis, Math. Dept., Whitman College, 2013.
- B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Eric Weisstein's World of Mathematics, Uniform Sum Distribution.
- Index entries for sequences related to factorial base representation
- Index entries for sequences related to factorial numbers
Apart from initial terms, same as
A059171.
From a(2)=3 onward the second topmost row of arrays
A276588 and
A276955.
-
[Factorial(n)+Factorial(n+1): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
-
seq(n!+(n-1)!,n=1..25);
-
Table[n! + (n + 1)!, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
Total/@Partition[Range[0, 20]!, 2, 1] (* Harvey P. Dale, Nov 29 2013 *)
-
a(n)=denominator(polcoeff((x-1)*exp(x+x*O(x^(n+1))),n+1)); \\ Gerry Martens, Aug 12 2015
-
vector(30, n, (n+1)*(n-1)!) \\ Michel Marcus, Aug 12 2015
A102462
Max{ k!/(a(1)!*a(2)!*..*a(n)!) : a(1) + 2*a(2) + 3*a(3) + ... + n*a(n) = n, a(1) + a(2) + ... + a(n) = k }.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 12, 20, 30, 60, 105, 168, 280, 504, 840, 1512, 2520, 5040, 9240, 15840, 27720, 55440, 102960, 180180, 360360, 675675, 1201200, 2162160, 4084080, 7351344, 12697776, 24504480, 46558512, 84651840, 155195040, 296281440, 543182640, 961015440
Offset: 0
-
b:= proc(n,i,p) option remember; `if`(n=0 or i=1, (p+n)!/n!,
max(seq(b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 15 2015
-
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p + n)!/n!, Max[Table[ b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
A181897
Triangle of refined rencontres numbers: T(n,k) is the number of permutations of n elements with cycle type k (k-th integer partition, defined by A194602).
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 8, 3, 6, 1, 10, 20, 15, 30, 20, 24, 1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120, 1, 21, 70, 105, 210, 420, 504, 105, 630, 280, 840, 210, 504, 420, 720, 1, 28, 112, 210, 420, 1120, 1344, 420, 2520, 1120, 3360, 1680, 4032
Offset: 1
Triangle begins:
1;
1, 1;
1, 3, 2;
1, 6, 8, 3, 6;
1, 10, 20, 15, 30, 20, 24;
1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120;
...
- Gregory Gerard Wojnar, Table of n, a(n) for n = 1..271
- Marc-Antoine Coppo and Bernard Candelpergher, Inverse binomial series and values of Arakawa-Kaneko zeta functions, Journal of Number Theory, (150) pp. 98-119, (2015). See p. 101.
- Bartlomiej Pawelski, On the number of inequivalent monotone Boolean functions of 8 variables, arXiv:2108.13997 [math.CO], 2021. Mentions this sequence.
- Bartłomiej Pawelski, Counting and generating monotone Boolean functions, Doctoral Diss., Univ. Gdańsk, (Poland, 2024). See pp. 26, 34.
- Tilman Piesk, Permutations by cycle type (Wikiversity article)
- Gregory Gerard Wojnar, Comments on A181897, Sep 29 2020.
Cf.
A036039 and references therein for different ordering of terms within each row.
-
Table[CoefficientRules[ n! CycleIndex[SymmetricGroup[n], s] // Expand][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Nov 09 2014 *)
(* Alternative program *)
partitionMultiplicities[aPartn_]:=Table[Count[aPartn,m],{m,Total[aPartn]}]
partitionBase[aPartn_]:=Sum[m*aPartn[[m]],{m,Length[aPartn]}]
partitionFactorial[aPartn_]:=Product[m^aPartn[[m]],{m,partitionBase[aPartn]}]
partitionParts[aPartn_]:=Sum[aPartn[[m]],{m,Length[aPartn]}]
A181897[aPartn_]:=Multinomial@@aPartn*partitionBase[aPartn]!/(partitionFactorial[aPartn]*partitionParts[aPartn]!)
Grid[Table[Map[A181897,ReverseSort[Map[partitionMultiplicities,Partitions[n]],LexicographicOrder]],{n,2,12}]] (* Gregory Gerard Wojnar, Jun 24 2025 *)
A349980
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 6, 7, 3, 8, 24, 31, 15, 20, 30, 120, 191, 135, 40, 90, 144, 720, 1331, 945, 280, 420, 504, 840, 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760, 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360, 362880, 958879, 646965, 395360, 238140, 72576, 151200, 172800, 226800, 403200
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 1, 3;
[4] 6, 7, 3, 8;
[5] 24, 31, 15, 20, 30;
[6] 120, 191, 135, 40, 90, 144;
[7] 720, 1331, 945, 280, 420, 504, 840;
[8] 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760;
[9] 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360;
...
Column 0 gives 1 together with
A000142.
Column 1 gives the nonzero terms of
A155521.
T(n,n-1) gives
A059171(n) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[2]=m,
0, l[2]), add(b(n-j, sort([l[], j])[1..2])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, n-1)))(b(n, [m$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 07 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[2]] == m, 0, l[[2]]], Sum[b[n-j, Sort[Append[l, j]][[1;;2]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m}]}, Table[Coefficient[p, x, i], {i, 0, Max[0, n - 1]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A261766
a(n) is the number of partial derangements of an n-set with at least one orbit of size exactly n.
Original entry on oeis.org
1, 0, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 0
a(3) = 8 because there are 8 partial derangements on {1,2,3} with at least one orbit of size 3 namely: (1,2) --> (2,3), (1,2) --> (3,1), (1,3) --> (2,1), (1,3) --> (3,2), (2,3) --> (3,1), (2,3) --> (1,2), (1,2,3) --> (2,3,1), (1,2,3) --> (3,1,2).
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
A100822
Triangle read by rows: T(n,k) is the number of deco polyominoes of height n with k cells in the first column. (A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 8, 9, 1, 24, 30, 32, 33, 1, 120, 144, 150, 152, 153, 1, 720, 840, 864, 870, 872, 873, 1, 5040, 5760, 5880, 5904, 5910, 5912, 5913, 1, 40320, 45360, 46080, 46200, 46224, 46230, 46232, 46233, 1, 362880, 403200, 408240, 408960, 409080, 409104, 409110, 409112, 409113, 1
Offset: 1
Triangle begins:
1;
1,1;
2,3,1;
6,8,9,1;
24,30,32,33,1;
T(2,1)=T(2,2)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 1 and 2 cells in their first columns.
- E. Barcucci, A. del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Comments