cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A010845 a(n) = 3*n*a(n-1) + 1, a(0) = 1.

Original entry on oeis.org

1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
Offset: 0

Views

Author

Keywords

Comments

a(n)/(A000142*A000244) is an increasingly good approximation to cube root of e.
Related to Incomplete Gamma Function at 1/3. - Michael Somos, Mar 26 1999
For positive n, a(n) equals 3^n times the permanent of the n X n matrix with (4/3)'s along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011

Examples

			1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.

Crossrefs

Cf. A000522, A010844, A056545, A056546, A056547 for analogs.

Programs

  • Mathematica
    Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
    a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *)
    Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */

Formula

E.g.f.: exp(x)/(1-3*x).
a(n) = floor( n!*e^(1/3)*3^n ) = n! * (Sum_{k=0..n} 3^(n-k) / k!) = n! * (e^(1/3) * 3^n - Sum_{k>n} 3^(n-k) / k!). - Michael Somos, Mar 26 1999
a(n) = Sum_{k=0..n} P(n, k)*3^k. - Ross La Haye, Aug 29 2005
Binomial transform of A032031. - Carl Najafi, Sep 11 2011
Conjecture: a(n) +(-3*n-1)*a(n-1) +3*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 16 2014
a(n) = hypergeometric_U(1,n+2,1/3)/3. - Peter Luschny, Nov 26 2014
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x >= 0} (3*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (4 - 3*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) := (3^n)*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = (3^n)*n!*( 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/(3*n + 1) )))) for n >= 2. Taking the limit as n -> oo gives the continued fraction representation exp(1/3) = 1 + 1/(3 - 3/(7 - 6/(10 - ... - (3*n - 3)/((3*n + 1) - ... )))). Cf. A010844. (End)

Extensions

Better description and formulas from Michael Somos
More terms from James Sellers, Jul 04 2000

A056546 a(n) = 5*n*a(n-1) + 1 with a(0)=1.

Original entry on oeis.org

1, 6, 61, 916, 18321, 458026, 13740781, 480927336, 19237093441, 865669204846, 43283460242301, 2380590313326556, 142835418799593361, 9284302221973568466, 649901155538149792621, 48742586665361234446576
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Examples

			a(2) = 5*2*a(1) + 1 = 10*6 + 1 = 61.
		

Crossrefs

Cf. A000522, A010844, A010845, A056545, A056547 for analogs. A056546/(A000142*A000351) is an increasingly good approximation to 5th root of e.

Programs

  • Mathematica
    m = 16; CoefficientList[E^x/(1-5x) + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Jun 03 2019 *)

Formula

a(n) = floor(e^(1/5)*5^n*n!).
From Philippe Deléham, Mar 14 2004: (Start)
a(n) = n!*Sum_{k=0..n} 5^(n-k)/k!.
E.g.f.: exp(x)/(1 - 5*x). (End)
a(n) = Sum_{k=0..n} P(n, k)*5^k. - Ross La Haye, Aug 29 2005
a(n) = hypergeometric_U(1, n+2 , 1/5)/5. - Peter Luschny, Nov 26 2014
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x >= 0} (5*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 5*x) satisfies the differential equation (1 - 5*x)*y' = (6 - 5*x)*y.
a(n) = (5*n + 1)*a(n-1) - 5*(n - 1)*a(n-2).
The sequence b(n) := 5^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 5. This leads to the continued fraction representation a(n) = 5^n*n!*( 1 + 1/(5 - 5/(11 - 10/(16 - ... - (5*n - 5)/(5*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/5) = 1 + 1/(5 - 5/(11 - 10/(16 - ... - (5*n - 5)/((5*n + 1) - ... )))). Cf. A010844. (End)

Extensions

More terms from James Sellers, Jul 04 2000

A056547 a(n) = 6*n*a(n-1) + 1 with a(0)=1.

Original entry on oeis.org

1, 7, 85, 1531, 36745, 1102351, 39684637, 1666754755, 80004228241, 4320228325015, 259213699500901, 17108104167059467, 1231783500028281625, 96079113002205966751, 8070645492185301207085, 726358094296677108637651
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Examples

			a(2) = 6*2*a(1) + 1 = 12*7 + 1 = 85.
		

Crossrefs

Cf. A000522, A010844, A010845, A056545, A056546 for analogs. A056547/(A000142*A000400) is an increasingly good approximation to 6th root of e.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,6a(n+1)+1}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Jul 17 2024 *)

Formula

a(n) = floor(e^(1/6)*6^n*n!).
a(n) = n!*Sum_{k=0..n} 6^(n-k)/k!. E.g.f.: exp(x)/(1 - 6*x). - Philippe Deléham, Mar 14 2004
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x = 0..inf} (6*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 6*x) satisfies the differential equation (1 - 6*x)*y' = (7 - 6*x)*y.
a(n) = (6*n + 1)*a(n-1) - 6*(n - 1)*a(n-2).
The sequence b(n) := 6^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 6. This leads to the continued fraction representation a(n) = 6^n*n!*( 1 + 1/(6 - 6/(13 - 12/(19 - ... - (6*n - 6)/(6*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/6) = 1 + 1/(6 - 6/(13 - 12/(19 - ... - (6*n - 6)/((6*n + 1) - ... )))). Cf. A010844. (End)

Extensions

More terms from James Sellers, Jul 04 2000

A320031 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
  1,    1,     1,      1,       1,       1,  ...
  1,    2,     3,      4,       5,       6,  ...
  1,    5,    13,     25,      41,      61,  ...
  1,   16,    79,    226,     493,     916,  ...
  1,   65,   633,   2713,    7889,   18321,  ...
  1,  326,  6331,  40696,  157781,  458026,  ...
		

Crossrefs

Columns k=0..6 give A000012, A000522, A010844, A010845, A056545, A056546, A056547.
Main diagonal gives A277452.

Programs

  • Maple
    A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
    for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
    # second Maple program:
    A:= proc(n, k) option remember;
          1 + `if`(n>0, k*n*A(n-1, k), 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 09 2020
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(x)/(1 - k*x).
A(n,k) = Sum_{j=0..n} binomial(n,j)*j!*k^j.
A(n,k) = hypergeom_2F0([1, -n], [], -k).
A(n,k) = 1 + [n > 0] * k * n * A(n-1,k). - Alois P. Heinz, May 09 2020
A(n,k) = floor(n!*k^n*exp(1/k)), k > 0, n + k > 1. - Peter McNair, Dec 20 2021
From Werner Schulte, Apr 14 2024: (Start)
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371898, i.e., A(n, k) = Sum_{i=0..k} binomial(k, i) * A371898(n, i).
Conjecture: E.g.f. of row n is exp(x) * (Sum_{k=0..n} A371898(n, k) * x^k / k!). (End)

A336807 a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.

Original entry on oeis.org

1, 5, 81, 2917, 186689, 18668901, 2688321745, 526911062021, 134889231877377, 43704111128270149, 17481644451308059601, 8461115914433100846885, 4873602766713466087805761, 3294555470298303075356694437, 2582931488713869611079648438609, 2324638339842482649971683594748101
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[4^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 4*x).
a(0) = 1; a(n) = 4 * n^2 * a(n-1) + 1.

A353548 Expansion of e.g.f. -log(1-4*x) * exp(x)/4.

Original entry on oeis.org

0, 1, 6, 47, 540, 8429, 166210, 3952955, 109981816, 3502905369, 125648153278, 5011458069639, 219987094389524, 10538817637744005, 547118005892177018, 30595552548140425747, 1833501625083035349488, 117219490267316310468913
Offset: 0

Views

Author

Seiichi Manyama, May 27 2022

Keywords

Crossrefs

Cf. A346396.
Essentially partial sums of A056545.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-4*x)*exp(x)/4)))
    
  • PARI
    a(n) = n!*sum(k=0, n-1, 4^(n-1-k)/((n-k)*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(4*i-3)*v[i]-4*(i-1)*v[i-1]+1); v;

Formula

a(n) = n! * Sum_{k=0..n-1} 4^(n-1-k) / ((n-k) * k!).
a(0) = 0, a(1) = 1, a(n) = (4 * n - 3) * a(n-1) - 4 * (n-1) * a(n-2) + 1.
a(n) ~ (n-1)! * exp(1/4) * 4^(n-1). - Vaclav Kotesovec, Jun 08 2022

A347012 E.g.f.: exp(x) / (1 - 4 * x)^(1/4).

Original entry on oeis.org

1, 2, 8, 64, 800, 13376, 278272, 6914048, 199629824, 6566164480, 242327576576, 9915111636992, 445432721932288, 21795710738038784, 1153805878313615360, 65700181140859518976, 4004182878034473254912, 260071258357260225609728, 17932703649301871611346944
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Comments

Binomial transform of A007696.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
    a:= n-> add(binomial(n, k)*g(k), k=0..n):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 10 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[Exp[x]/(1 - 4 x)^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
    Table[HypergeometricU[1/4, n + 5/4, 1/4]/Sqrt[2], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * A007696(k).
a(n) ~ n! * exp(1/4) * 4^n / (Gamma(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 14 2021

A277472 a(n) = (-i)^n * Integral_{x>=0} H_n(i*x) * exp(-x), where H_n(x) is n-th Hermite polynomial, i=sqrt(-1).

Original entry on oeis.org

1, 2, 10, 60, 492, 4920, 59160, 828240, 13253520, 238563360, 4771297440, 104968543680, 2519245713600, 65500388553600, 1834010896798080, 55020326903942400, 1760650461445075200, 59862115689132556800, 2155036164826415270400, 81891374263403780275200
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    FunctionExpand@Table[Exp[1/4] (-2 I)^n n! (Cos[Pi n/2] Gamma[n/2 + 1, 1/4]/Gamma[n/2 + 1] + I Gamma[(n + 1)/2, 1/4] Sin[Pi n/2]/Gamma[(n + 1)/2]), {n, 0, 20}]
    FunctionExpand@Table[2^n (n!/Floor[n/2]!) Gamma[Ceiling[(n+1)/2], 1/4] Exp[1/4], {n, 0, 19}] (* Peter Luschny, Oct 19 2016 *)
  • PARI
    for(n=0, 30, print1(round(2^n*(n!/floor(n/2)!)* incgam(ceil( (n+1)/2), 1/4)*exp(1/4)), ", ")) \\ G. C. Greubel, Jul 12 2018
  • Sage
    def A():
        yield 1
        yield 2
        a, h, f, g, n, b = 10, 5, 1, 2, 2, False
        while True:
            yield a
            if b:
                f = h
                h = 4 * n * h + 1
                n += 1
                a = (a * h) // f
            else:
                g += 4
                a *= g
            b = not b
    a = A(); print([next(a) for  in range(20)]) # _Peter Luschny, Oct 19 2016
    

Formula

a(n) = exp(1/4)*(-2*i)^n * n!*( cos(Pi*n/2)*Gamma(n/2 +1, 1/4)/Gamma(n/2 +1) + i*Gamma((n+1)/2, 1/4)*sin(Pi*n/2)/Gamma((n+1)/2) ).
From Peter Luschny, Oct 19 2016: (Start)
a(n) = 2^n*(n!/floor(n/2)!)*Gamma(ceiling((n+1)/2),1/4)*exp(1/4).
The swinging factorial A056040(n) divides a(n). (End)

A097821 Expansion of e.g.f. exp(2x)/(1-5x).

Original entry on oeis.org

1, 7, 74, 1118, 22376, 559432, 16783024, 587405968, 23496238976, 1057330754432, 52866537722624, 2907659574746368, 174459574484786176, 11339872341511109632, 793791063905777690624, 59534329792933326829568
Offset: 0

Views

Author

Paul Barry, Aug 26 2004

Keywords

Comments

Second binomial transform of n!*5^n.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; 5*n*procname(n-1)+2^n end proc:
    f(0):= 1:
    map(f, [$0..50]); # Robert Israel, Nov 10 2022
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-5*x))) \\ Michel Marcus, Nov 08 2022

Formula

a(n) = 5*n*a(n-1) + 2^n, n > 0, a(0)=1.
D-finite with recurrence a(n) +(-5*n-2)*a(n-1) +10*(n-1)*a(n-2)=0. - R. J. Mathar, Aug 20 2021
a(n) = 5^n * n! * Sum_{k = 0..n} (2/5)^k/k! = 5^n * exp(2/5) * gamma(n + 1, 2/5). - Gerry Martens, Nov 07 2022

A375613 Triangle read by rows: T(n, k) = n! * 4^k * hypergeom([-k], [-n], 1/4).

Original entry on oeis.org

1, 1, 5, 2, 9, 41, 6, 26, 113, 493, 24, 102, 434, 1849, 7889, 120, 504, 2118, 8906, 37473, 157781, 720, 3000, 12504, 52134, 217442, 907241, 3786745, 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861, 40320, 166320, 686160, 2831160, 11683224, 48219366, 199040786, 821723673, 3392923553
Offset: 0

Views

Author

Detlef Meya, Aug 21 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 5;
[2] 2, 9, 41;
[3] 6, 26, 113, 493;
[4] 24, 102, 434, 1849, 7889;
[5] 120, 504, 2118, 8906, 37473, 157781;
[6] 720, 3000, 12504, 52134, 217442, 907241, 3786745;
[7] 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[4^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = Sum_{j=0..k} 4^(k - j)*binomial(k, k - j)*(n - j)!.
Showing 1-10 of 11 results. Next