A010845
a(n) = 3*n*a(n-1) + 1, a(0) = 1.
Original entry on oeis.org
1, 4, 25, 226, 2713, 40696, 732529, 15383110, 369194641, 9968255308, 299047659241, 9868572754954, 355268619178345, 13855476147955456, 581929998214129153, 26186849919635811886, 1256968796142518970529
Offset: 0
1 + 4*x + 25*x^2 + 226*x^3 + 2713*x^4 + 40696*x^5 + 732529*x^6 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
-
Table[ Gamma[ n, 1/3 ]*Exp[ 1/3 ]*3^(n-1), {n, 1, 24} ]
a[ n_] := If[ n<0, 0, Floor[ n! E^(1/3) 3^n ]] (* Michael Somos, Sep 04 2013 *)
Range[0, 20]! CoefficientList[Series[Exp[x]/(1 - 3 x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, 3^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */
A056546
a(n) = 5*n*a(n-1) + 1 with a(0)=1.
Original entry on oeis.org
1, 6, 61, 916, 18321, 458026, 13740781, 480927336, 19237093441, 865669204846, 43283460242301, 2380590313326556, 142835418799593361, 9284302221973568466, 649901155538149792621, 48742586665361234446576
Offset: 0
a(2) = 5*2*a(1) + 1 = 10*6 + 1 = 61.
A056547
a(n) = 6*n*a(n-1) + 1 with a(0)=1.
Original entry on oeis.org
1, 7, 85, 1531, 36745, 1102351, 39684637, 1666754755, 80004228241, 4320228325015, 259213699500901, 17108104167059467, 1231783500028281625, 96079113002205966751, 8070645492185301207085, 726358094296677108637651
Offset: 0
a(2) = 6*2*a(1) + 1 = 12*7 + 1 = 85.
-
nxt[{n_,a_}]:={n+1,6a(n+1)+1}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Jul 17 2024 *)
A320031
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 16, 79, 226, 493, 916, ...
1, 65, 633, 2713, 7889, 18321, ...
1, 326, 6331, 40696, 157781, 458026, ...
-
A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
# second Maple program:
A:= proc(n, k) option remember;
1 + `if`(n>0, k*n*A(n-1, k), 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, May 09 2020
-
Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A336807
a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.
Original entry on oeis.org
1, 5, 81, 2917, 186689, 18668901, 2688321745, 526911062021, 134889231877377, 43704111128270149, 17481644451308059601, 8461115914433100846885, 4873602766713466087805761, 3294555470298303075356694437, 2582931488713869611079648438609, 2324638339842482649971683594748101
Offset: 0
-
Table[n!^2 Sum[4^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
A353548
Expansion of e.g.f. -log(1-4*x) * exp(x)/4.
Original entry on oeis.org
0, 1, 6, 47, 540, 8429, 166210, 3952955, 109981816, 3502905369, 125648153278, 5011458069639, 219987094389524, 10538817637744005, 547118005892177018, 30595552548140425747, 1833501625083035349488, 117219490267316310468913
Offset: 0
Essentially partial sums of
A056545.
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-4*x)*exp(x)/4)))
-
a(n) = n!*sum(k=0, n-1, 4^(n-1-k)/((n-k)*k!));
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(4*i-3)*v[i]-4*(i-1)*v[i-1]+1); v;
A347012
E.g.f.: exp(x) / (1 - 4 * x)^(1/4).
Original entry on oeis.org
1, 2, 8, 64, 800, 13376, 278272, 6914048, 199629824, 6566164480, 242327576576, 9915111636992, 445432721932288, 21795710738038784, 1153805878313615360, 65700181140859518976, 4004182878034473254912, 260071258357260225609728, 17932703649301871611346944
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
a:= n-> add(binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 10 2021
-
nmax = 18; CoefficientList[Series[Exp[x]/(1 - 4 x)^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
Table[HypergeometricU[1/4, n + 5/4, 1/4]/Sqrt[2], {n, 0, 18}]
A277472
a(n) = (-i)^n * Integral_{x>=0} H_n(i*x) * exp(-x), where H_n(x) is n-th Hermite polynomial, i=sqrt(-1).
Original entry on oeis.org
1, 2, 10, 60, 492, 4920, 59160, 828240, 13253520, 238563360, 4771297440, 104968543680, 2519245713600, 65500388553600, 1834010896798080, 55020326903942400, 1760650461445075200, 59862115689132556800, 2155036164826415270400, 81891374263403780275200
Offset: 0
-
FunctionExpand@Table[Exp[1/4] (-2 I)^n n! (Cos[Pi n/2] Gamma[n/2 + 1, 1/4]/Gamma[n/2 + 1] + I Gamma[(n + 1)/2, 1/4] Sin[Pi n/2]/Gamma[(n + 1)/2]), {n, 0, 20}]
FunctionExpand@Table[2^n (n!/Floor[n/2]!) Gamma[Ceiling[(n+1)/2], 1/4] Exp[1/4], {n, 0, 19}] (* Peter Luschny, Oct 19 2016 *)
-
for(n=0, 30, print1(round(2^n*(n!/floor(n/2)!)* incgam(ceil( (n+1)/2), 1/4)*exp(1/4)), ", ")) \\ G. C. Greubel, Jul 12 2018
-
def A():
yield 1
yield 2
a, h, f, g, n, b = 10, 5, 1, 2, 2, False
while True:
yield a
if b:
f = h
h = 4 * n * h + 1
n += 1
a = (a * h) // f
else:
g += 4
a *= g
b = not b
a = A(); print([next(a) for in range(20)]) # _Peter Luschny, Oct 19 2016
A097821
Expansion of e.g.f. exp(2x)/(1-5x).
Original entry on oeis.org
1, 7, 74, 1118, 22376, 559432, 16783024, 587405968, 23496238976, 1057330754432, 52866537722624, 2907659574746368, 174459574484786176, 11339872341511109632, 793791063905777690624, 59534329792933326829568
Offset: 0
-
f:= proc(n) option remember; 5*n*procname(n-1)+2^n end proc:
f(0):= 1:
map(f, [$0..50]); # Robert Israel, Nov 10 2022
-
my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-5*x))) \\ Michel Marcus, Nov 08 2022
A375613
Triangle read by rows: T(n, k) = n! * 4^k * hypergeom([-k], [-n], 1/4).
Original entry on oeis.org
1, 1, 5, 2, 9, 41, 6, 26, 113, 493, 24, 102, 434, 1849, 7889, 120, 504, 2118, 8906, 37473, 157781, 720, 3000, 12504, 52134, 217442, 907241, 3786745, 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861, 40320, 166320, 686160, 2831160, 11683224, 48219366, 199040786, 821723673, 3392923553
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 5;
[2] 2, 9, 41;
[3] 6, 26, 113, 493;
[4] 24, 102, 434, 1849, 7889;
[5] 120, 504, 2118, 8906, 37473, 157781;
[6] 720, 3000, 12504, 52134, 217442, 907241, 3786745;
[7] 5040, 20880, 86520, 358584, 1486470, 6163322, 25560529, 106028861;
...
-
T[n_, k_] := Sum[4^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
Showing 1-10 of 11 results.
Comments